Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem22 Structured version   Visualization version   GIF version

Theorem mapdpglem22 37502
Description: Lemma for mapdpg 37515. Baer p. 45, line 9: "(F(x-y))* = ... = G(x'-y')." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem22 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem22
StepHypRef Expression
1 mapdpglem4.jt . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
52, 3, 4lcdlvec 37400 . . 3 (𝜑𝐶 ∈ LVec)
6 mapdpglem.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
72, 6, 4dvhlvec 36918 . . . . . 6 (𝜑𝑈 ∈ LVec)
8 mapdpglem3.a . . . . . . 7 𝐴 = (Scalar‘𝑈)
98lvecdrng 19327 . . . . . 6 (𝑈 ∈ LVec → 𝐴 ∈ DivRing)
107, 9syl 17 . . . . 5 (𝜑𝐴 ∈ DivRing)
11 mapdpglem4.g4 . . . . 5 (𝜑𝑔𝐵)
12 mapdpglem.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
14 mapdpglem.s . . . . . 6 = (-g𝑈)
15 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
16 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
17 mapdpglem.y . . . . . 6 (𝜑𝑌𝑉)
18 mapdpglem1.p . . . . . 6 = (LSSum‘𝐶)
19 mapdpglem2.j . . . . . 6 𝐽 = (LSpan‘𝐶)
20 mapdpglem3.f . . . . . 6 𝐹 = (Base‘𝐶)
21 mapdpglem3.te . . . . . 6 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
22 mapdpglem3.b . . . . . 6 𝐵 = (Base‘𝐴)
23 mapdpglem3.t . . . . . 6 · = ( ·𝑠𝐶)
24 mapdpglem3.r . . . . . 6 𝑅 = (-g𝐶)
25 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
26 mapdpglem3.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
27 mapdpglem4.q . . . . . 6 𝑄 = (0g𝑈)
28 mapdpglem.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
29 mapdpglem4.z . . . . . 6 0 = (0g𝐴)
30 mapdpglem4.z4 . . . . . 6 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
31 mapdpglem4.t4 . . . . . 6 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
32 mapdpglem4.xn . . . . . 6 (𝜑𝑋𝑄)
332, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32mapdpglem11 37491 . . . . 5 (𝜑𝑔0 )
34 eqid 2760 . . . . . 6 (invr𝐴) = (invr𝐴)
3522, 29, 34drnginvrcl 18986 . . . . 5 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ∈ 𝐵)
3610, 11, 33, 35syl3anc 1477 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ∈ 𝐵)
37 eqid 2760 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
38 eqid 2760 . . . . 5 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
392, 6, 8, 22, 3, 37, 38, 4lcdsbase 37409 . . . 4 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
4036, 39eleqtrrd 2842 . . 3 (𝜑 → ((invr𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)))
4122, 29, 34drnginvrn0 18987 . . . . 5 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ≠ 0 )
4210, 11, 33, 41syl3anc 1477 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ≠ 0 )
43 eqid 2760 . . . . 5 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
442, 6, 8, 29, 3, 37, 43, 4lcd0 37417 . . . 4 (𝜑 → (0g‘(Scalar‘𝐶)) = 0 )
4542, 44neeqtrrd 3006 . . 3 (𝜑 → ((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶)))
462, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21mapdpglem2a 37483 . . 3 (𝜑𝑡𝐹)
4720, 37, 23, 38, 43, 19lspsnvs 19336 . . 3 ((𝐶 ∈ LVec ∧ (((invr𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)) ∧ ((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶))) ∧ 𝑡𝐹) → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡}))
485, 40, 45, 46, 47syl121anc 1482 . 2 (𝜑 → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡}))
49 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
50 mapdpglem17.ep . . . . 5 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
512, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32, 49, 50mapdpglem21 37501 . . . 4 (𝜑 → (((invr𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸))
5251sneqd 4333 . . 3 (𝜑 → {(((invr𝐴)‘𝑔) · 𝑡)} = {(𝐺𝑅𝐸)})
5352fveq2d 6357 . 2 (𝜑 → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{(𝐺𝑅𝐸)}))
541, 48, 533eqtr2d 2800 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  {csn 4321  cfv 6049  (class class class)co 6814  Basecbs 16079  Scalarcsca 16166   ·𝑠 cvsca 16167  0gc0g 16322  -gcsg 17645  LSSumclsm 18269  invrcinvr 18891  DivRingcdr 18969  LSpanclspn 19193  LVecclvec 19324  HLchlt 35158  LHypclh 35791  DVecHcdvh 36887  LCDualclcd 37395  mapdcmpd 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-undef 7569  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-0g 16324  df-mre 16468  df-mrc 16469  df-acs 16471  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-cntz 17970  df-oppg 17996  df-lsm 18271  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-drng 18971  df-lmod 19087  df-lss 19155  df-lsp 19194  df-lvec 19325  df-lsatoms 34784  df-lshyp 34785  df-lcv 34827  df-lfl 34866  df-lkr 34894  df-ldual 34932  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35305  df-lplanes 35306  df-lvols 35307  df-lines 35308  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967  df-tgrp 36551  df-tendo 36563  df-edring 36565  df-dveca 36811  df-disoa 36838  df-dvech 36888  df-dib 36948  df-dic 36982  df-dih 37038  df-doch 37157  df-djh 37204  df-lcdual 37396  df-mapd 37434
This theorem is referenced by:  mapdpglem23  37503
  Copyright terms: Public domain W3C validator