![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem21 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 37509. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
Ref | Expression |
---|---|
mapdpglem21 | ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem4.t4 | . . 3 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
2 | 1 | oveq2d 6808 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧))) |
3 | mapdpglem3.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
4 | mapdpglem3.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
5 | eqid 2770 | . . 3 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
6 | eqid 2770 | . . 3 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
7 | mapdpglem3.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
8 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
10 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | lcdlmod 37395 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
12 | mapdpglem.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
13 | 8, 12, 10 | dvhlvec 36912 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
14 | mapdpglem3.a | . . . . . . 7 ⊢ 𝐴 = (Scalar‘𝑈) | |
15 | 14 | lvecdrng 19317 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
16 | 13, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
17 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
18 | mapdpglem.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
19 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
20 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
21 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
22 | mapdpglem.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
23 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
24 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
25 | mapdpglem2.j | . . . . . 6 ⊢ 𝐽 = (LSpan‘𝐶) | |
26 | mapdpglem3.te | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
27 | mapdpglem3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
28 | mapdpglem3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
29 | mapdpglem3.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
30 | mapdpglem4.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑈) | |
31 | mapdpglem.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | mapdpglem4.jt | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
33 | mapdpglem4.z | . . . . . 6 ⊢ 0 = (0g‘𝐴) | |
34 | mapdpglem4.z4 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
35 | mapdpglem4.xn | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
36 | 8, 18, 12, 19, 20, 21, 9, 10, 22, 23, 24, 25, 3, 26, 14, 27, 4, 7, 28, 29, 30, 31, 32, 33, 17, 34, 1, 35 | mapdpglem11 37485 | . . . . 5 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
37 | eqid 2770 | . . . . . 6 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
38 | 27, 33, 37 | drnginvrcl 18973 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
39 | 16, 17, 36, 38 | syl3anc 1475 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
40 | 8, 12, 14, 27, 9, 5, 6, 10 | lcdsbase 37403 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
41 | 39, 40 | eleqtrrd 2852 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶))) |
42 | 8, 12, 14, 27, 9, 3, 4, 10, 17, 28 | lcdvscl 37408 | . . 3 ⊢ (𝜑 → (𝑔 · 𝐺) ∈ 𝐹) |
43 | eqid 2770 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
44 | eqid 2770 | . . . . . 6 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
45 | 8, 12, 10 | dvhlmod 36913 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
46 | 19, 43, 21 | lspsncl 19189 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
47 | 45, 23, 46 | syl2anc 565 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
48 | 8, 18, 12, 43, 9, 44, 10, 47 | mapdcl2 37459 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
49 | 3, 44 | lssss 19146 | . . . . 5 ⊢ ((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
50 | 48, 49 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
51 | 50, 34 | sseldd 3751 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝐹) |
52 | 3, 4, 5, 6, 7, 11, 41, 42, 51 | lmodsubdi 19129 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧)) = ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
53 | eqid 2770 | . . . . . . . . 9 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
54 | eqid 2770 | . . . . . . . . 9 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
55 | 27, 33, 53, 54, 37 | drnginvrr 18976 | . . . . . . . 8 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
56 | 16, 17, 36, 55 | syl3anc 1475 | . . . . . . 7 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
57 | eqid 2770 | . . . . . . . 8 ⊢ (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶)) | |
58 | 8, 12, 14, 54, 9, 5, 57, 10 | lcd1 37412 | . . . . . . 7 ⊢ (𝜑 → (1r‘(Scalar‘𝐶)) = (1r‘𝐴)) |
59 | 56, 58 | eqtr4d 2807 | . . . . . 6 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘(Scalar‘𝐶))) |
60 | 59 | oveq1d 6807 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = ((1r‘(Scalar‘𝐶)) · 𝐺)) |
61 | 8, 12, 14, 27, 53, 9, 3, 4, 10, 39, 17, 28 | lcdvsass 37410 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))) |
62 | 3, 5, 4, 57 | lmodvs1 19100 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
63 | 11, 28, 62 | syl2anc 565 | . . . . 5 ⊢ (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
64 | 60, 61, 63 | 3eqtr3d 2812 | . . . 4 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺)) = 𝐺) |
65 | 64 | oveq1d 6807 | . . 3 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
66 | mapdpglem17.ep | . . . 4 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
67 | 66 | oveq2i 6803 | . . 3 ⊢ (𝐺𝑅𝐸) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) |
68 | 65, 67 | syl6eqr 2822 | . 2 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅𝐸)) |
69 | 2, 52, 68 | 3eqtrd 2808 | 1 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ⊆ wss 3721 {csn 4314 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 .rcmulr 16149 Scalarcsca 16151 ·𝑠 cvsca 16152 0gc0g 16307 -gcsg 17631 LSSumclsm 18255 1rcur 18708 invrcinvr 18878 DivRingcdr 18956 LModclmod 19072 LSubSpclss 19141 LSpanclspn 19183 LVecclvec 19314 HLchlt 35152 LHypclh 35785 DVecHcdvh 36881 LCDualclcd 37389 mapdcmpd 37427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-riotaBAD 34754 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-tpos 7503 df-undef 7550 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-0g 16309 df-mre 16453 df-mrc 16454 df-acs 16456 df-preset 17135 df-poset 17153 df-plt 17165 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-p1 17247 df-lat 17253 df-clat 17315 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-subg 17798 df-cntz 17956 df-oppg 17982 df-lsm 18257 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-dvr 18890 df-drng 18958 df-lmod 19074 df-lss 19142 df-lsp 19184 df-lvec 19315 df-lsatoms 34778 df-lshyp 34779 df-lcv 34821 df-lfl 34860 df-lkr 34888 df-ldual 34926 df-oposet 34978 df-ol 34980 df-oml 34981 df-covers 35068 df-ats 35069 df-atl 35100 df-cvlat 35124 df-hlat 35153 df-llines 35299 df-lplanes 35300 df-lvols 35301 df-lines 35302 df-psubsp 35304 df-pmap 35305 df-padd 35597 df-lhyp 35789 df-laut 35790 df-ldil 35905 df-ltrn 35906 df-trl 35961 df-tgrp 36545 df-tendo 36557 df-edring 36559 df-dveca 36805 df-disoa 36832 df-dvech 36882 df-dib 36942 df-dic 36976 df-dih 37032 df-doch 37151 df-djh 37198 df-lcdual 37390 df-mapd 37428 |
This theorem is referenced by: mapdpglem22 37496 |
Copyright terms: Public domain | W3C validator |