Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdordlem2 Structured version   Visualization version   GIF version

Theorem mapdordlem2 37243
Description: Lemma for mapdord 37244. Ordering property of projectivity 𝑀. TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the 𝑇 hypothesis. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdord.h 𝐻 = (LHyp‘𝐾)
mapdord.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdord.s 𝑆 = (LSubSp‘𝑈)
mapdord.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdord.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdord.x (𝜑𝑋𝑆)
mapdord.y (𝜑𝑌𝑆)
mapdord.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdord.a 𝐴 = (LSAtoms‘𝑈)
mapdord.f 𝐹 = (LFnl‘𝑈)
mapdord.c 𝐽 = (LSHyp‘𝑈)
mapdord.l 𝐿 = (LKer‘𝑈)
mapdord.t 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
mapdord.q 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
Assertion
Ref Expression
mapdordlem2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Distinct variable groups:   𝑔,𝐾   𝑈,𝑔   𝑔,𝑊   𝑔,𝐹   𝑔,𝐽   𝑔,𝐿   𝑔,𝑂
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝐶(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)   𝑋(𝑔)   𝑌(𝑔)

Proof of Theorem mapdordlem2
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdord.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdord.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdord.s . . . 4 𝑆 = (LSubSp‘𝑈)
4 mapdord.f . . . 4 𝐹 = (LFnl‘𝑈)
5 mapdord.l . . . 4 𝐿 = (LKer‘𝑈)
6 mapdord.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
7 mapdord.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapdord.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdord.x . . . 4 (𝜑𝑋𝑆)
10 mapdord.q . . . 4 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mapdvalc 37235 . . 3 (𝜑 → (𝑀𝑋) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋})
12 mapdord.y . . . 4 (𝜑𝑌𝑆)
131, 2, 3, 4, 5, 6, 7, 8, 12, 10mapdvalc 37235 . . 3 (𝜑 → (𝑀𝑌) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
1411, 13sseq12d 3667 . 2 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
15 ss2rab 3711 . . . . 5 ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ ∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
16 eqid 2651 . . . . . . . . 9 (Base‘𝑈) = (Base‘𝑈)
17 mapdord.c . . . . . . . . 9 𝐽 = (LSHyp‘𝑈)
18 mapdord.t . . . . . . . . 9 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}
191, 6, 2, 16, 17, 4, 5, 18, 10, 8mapdordlem1a 37240 . . . . . . . 8 (𝜑 → (𝑓𝑇 ↔ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)))
20 simprl 809 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → 𝑓𝐶)
21 idd 24 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → (((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2220, 21embantd 59 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2322ex 449 . . . . . . . 8 (𝜑 → ((𝑓𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽) → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2419, 23sylbid 230 . . . . . . 7 (𝜑 → (𝑓𝑇 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2524com23 86 . . . . . 6 (𝜑 → ((𝑓𝐶 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)) → (𝑓𝑇 → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))))
2625ralimdv2 2990 . . . . 5 (𝜑 → (∀𝑓𝐶 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
2715, 26syl5bi 232 . . . 4 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
28 mapdord.a . . . . . 6 𝐴 = (LSAtoms‘𝑈)
291, 2, 8dvhlmod 36716 . . . . . 6 (𝜑𝑈 ∈ LMod)
303, 28, 29, 9, 12lssatle 34620 . . . . 5 (𝜑 → (𝑋𝑌 ↔ ∀𝑝𝐴 (𝑝𝑋𝑝𝑌)))
3118mapdordlem1 37242 . . . . . . . . . . 11 (𝑓𝑇 ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽))
3231simprbi 479 . . . . . . . . . 10 (𝑓𝑇 → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
3332adantl 481 . . . . . . . . 9 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
348adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3531simplbi 475 . . . . . . . . . . 11 (𝑓𝑇𝑓𝐹)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑓𝐹)
371, 6, 2, 4, 17, 5, 34, 36dochlkr 36991 . . . . . . . . 9 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽 ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽)))
3833, 37mpbid 222 . . . . . . . 8 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝐿𝑓) ∈ 𝐽))
3938simpld 474 . . . . . . 7 ((𝜑𝑓𝑇) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
4038simprd 478 . . . . . . . 8 ((𝜑𝑓𝑇) → (𝐿𝑓) ∈ 𝐽)
411, 6, 2, 28, 17, 34, 40dochshpsat 37060 . . . . . . 7 ((𝜑𝑓𝑇) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ (𝑂‘(𝐿𝑓)) ∈ 𝐴))
4239, 41mpbid 222 . . . . . 6 ((𝜑𝑓𝑇) → (𝑂‘(𝐿𝑓)) ∈ 𝐴)
431, 2, 8dvhlvec 36715 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑈 ∈ LVec)
458adantr 480 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simpr 476 . . . . . . . . . . 11 ((𝜑𝑝𝐴) → 𝑝𝐴)
471, 2, 6, 28, 17, 45, 46dochsatshp 37057 . . . . . . . . . 10 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ 𝐽)
4817, 4, 5lshpkrex 34723 . . . . . . . . . 10 ((𝑈 ∈ LVec ∧ (𝑂𝑝) ∈ 𝐽) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
4944, 47, 48syl2anc 694 . . . . . . . . 9 ((𝜑𝑝𝐴) → ∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝))
50 df-rex 2947 . . . . . . . . 9 (∃𝑓𝐹 (𝐿𝑓) = (𝑂𝑝) ↔ ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
5149, 50sylib 208 . . . . . . . 8 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)))
52 simprl 809 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝐹)
53 simprr 811 . . . . . . . . . . . . . . . 16 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝐿𝑓) = (𝑂𝑝))
5453fveq2d 6233 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝐿𝑓)) = (𝑂‘(𝑂𝑝)))
5554fveq2d 6233 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘(𝑂‘(𝑂𝑝))))
5629adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝𝐴) → 𝑈 ∈ LMod)
5716, 28, 56, 46lsatssv 34603 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝𝐴) → 𝑝 ⊆ (Base‘𝑈))
58 eqid 2651 . . . . . . . . . . . . . . . . . 18 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
591, 58, 2, 16, 6dochcl 36959 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ⊆ (Base‘𝑈)) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
6045, 57, 59syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝜑𝑝𝐴) → (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
611, 58, 6dochoc 36973 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑂𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6245, 60, 61syl2anc 694 . . . . . . . . . . . . . . 15 ((𝜑𝑝𝐴) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6362adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝑂𝑝))) = (𝑂𝑝))
6455, 63eqtrd 2685 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂𝑝))
6547adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂𝑝) ∈ 𝐽)
6664, 65eqeltrd 2730 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂‘(𝐿𝑓))) ∈ 𝐽)
6752, 66, 31sylanbrc 699 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑓𝑇)
681, 2, 58, 28dih1dimat 36936 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
6945, 46, 68syl2anc 694 . . . . . . . . . . . . . 14 ((𝜑𝑝𝐴) → 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊))
701, 58, 6dochoc 36973 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝑂‘(𝑂𝑝)) = 𝑝)
7145, 69, 70syl2anc 694 . . . . . . . . . . . . 13 ((𝜑𝑝𝐴) → (𝑂‘(𝑂𝑝)) = 𝑝)
7271adantr 480 . . . . . . . . . . . 12 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑂‘(𝑂𝑝)) = 𝑝)
7354, 72eqtr2d 2686 . . . . . . . . . . 11 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → 𝑝 = (𝑂‘(𝐿𝑓)))
7467, 73jca 553 . . . . . . . . . 10 (((𝜑𝑝𝐴) ∧ (𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝))) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7574ex 449 . . . . . . . . 9 ((𝜑𝑝𝐴) → ((𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → (𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7675eximdv 1886 . . . . . . . 8 ((𝜑𝑝𝐴) → (∃𝑓(𝑓𝐹 ∧ (𝐿𝑓) = (𝑂𝑝)) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓)))))
7751, 76mpd 15 . . . . . . 7 ((𝜑𝑝𝐴) → ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
78 df-rex 2947 . . . . . . 7 (∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)) ↔ ∃𝑓(𝑓𝑇𝑝 = (𝑂‘(𝐿𝑓))))
7977, 78sylibr 224 . . . . . 6 ((𝜑𝑝𝐴) → ∃𝑓𝑇 𝑝 = (𝑂‘(𝐿𝑓)))
80 sseq1 3659 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑋 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑋))
81 sseq1 3659 . . . . . . . 8 (𝑝 = (𝑂‘(𝐿𝑓)) → (𝑝𝑌 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
8280, 81imbi12d 333 . . . . . . 7 (𝑝 = (𝑂‘(𝐿𝑓)) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8382adantl 481 . . . . . 6 ((𝜑𝑝 = (𝑂‘(𝐿𝑓))) → ((𝑝𝑋𝑝𝑌) ↔ ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8442, 79, 83ralxfrd 4909 . . . . 5 (𝜑 → (∀𝑝𝐴 (𝑝𝑋𝑝𝑌) ↔ ∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)))
8530, 84bitr2d 269 . . . 4 (𝜑 → (∀𝑓𝑇 ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌) ↔ 𝑋𝑌))
8627, 85sylibd 229 . . 3 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} → 𝑋𝑌))
87 simplr 807 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → 𝑋𝑌)
88 sstr 3644 . . . . . . . 8 (((𝑂‘(𝐿𝑓)) ⊆ 𝑋𝑋𝑌) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
8988ancoms 468 . . . . . . 7 ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌)
9089a1i 11 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑋𝑌 ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑋) → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9187, 90mpand 711 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑓𝐶) → ((𝑂‘(𝐿𝑓)) ⊆ 𝑋 → (𝑂‘(𝐿𝑓)) ⊆ 𝑌))
9291ss2rabdv 3716 . . . 4 ((𝜑𝑋𝑌) → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌})
9392ex 449 . . 3 (𝜑 → (𝑋𝑌 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌}))
9486, 93impbid 202 . 2 (𝜑 → ({𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑋} ⊆ {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑌} ↔ 𝑋𝑌))
9514, 94bitrd 268 1 (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  {crab 2945  wss 3607  ran crn 5144  cfv 5926  Basecbs 15904  LModclmod 18911  LSubSpclss 18980  LVecclvec 19150  LSAtomsclsa 34579  LSHypclsh 34580  LFnlclfn 34662  LKerclk 34690  HLchlt 34955  LHypclh 35588  DVecHcdvh 36684  DIsoHcdih 36834  ocHcoch 36953  mapdcmpd 37230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-undef 7444  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-cntz 17796  df-lsm 18097  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lvec 19151  df-lsatoms 34581  df-lshyp 34582  df-lfl 34663  df-lkr 34691  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tgrp 36348  df-tendo 36360  df-edring 36362  df-dveca 36608  df-disoa 36635  df-dvech 36685  df-dib 36745  df-dic 36779  df-dih 36835  df-doch 36954  df-djh 37001  df-mapd 37231
This theorem is referenced by:  mapdord  37244
  Copyright terms: Public domain W3C validator