![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdm0OLD | Structured version Visualization version GIF version |
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdm0OLD | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4942 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | elmapg 8036 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) | |
3 | 1, 2 | mpan2 709 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (𝐴 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐴)) |
4 | 3 | biimpa 502 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (𝐴 ↑𝑚 ∅)) → 𝑓:∅⟶𝐴) |
5 | f0bi 6249 | . . . 4 ⊢ (𝑓:∅⟶𝐴 ↔ 𝑓 = ∅) | |
6 | 4, 5 | sylib 208 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (𝐴 ↑𝑚 ∅)) → 𝑓 = ∅) |
7 | 6 | ralrimiva 3104 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑓 ∈ (𝐴 ↑𝑚 ∅)𝑓 = ∅) |
8 | f0 6247 | . . . . . 6 ⊢ ∅:∅⟶𝐴 | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ∅:∅⟶𝐴) |
10 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
11 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
12 | elmapg 8036 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (∅ ∈ (𝐴 ↑𝑚 ∅) ↔ ∅:∅⟶𝐴)) | |
13 | 10, 11, 12 | syl2anc 696 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∅ ∈ (𝐴 ↑𝑚 ∅) ↔ ∅:∅⟶𝐴)) |
14 | 9, 13 | mpbird 247 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ (𝐴 ↑𝑚 ∅)) |
15 | ne0i 4064 | . . . 4 ⊢ (∅ ∈ (𝐴 ↑𝑚 ∅) → (𝐴 ↑𝑚 ∅) ≠ ∅) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) ≠ ∅) |
17 | eqsn 4506 | . . 3 ⊢ ((𝐴 ↑𝑚 ∅) ≠ ∅ → ((𝐴 ↑𝑚 ∅) = {∅} ↔ ∀𝑓 ∈ (𝐴 ↑𝑚 ∅)𝑓 = ∅)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ↑𝑚 ∅) = {∅} ↔ ∀𝑓 ∈ (𝐴 ↑𝑚 ∅)𝑓 = ∅)) |
19 | 7, 18 | mpbird 247 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 Vcvv 3340 ∅c0 4058 {csn 4321 ⟶wf 6045 (class class class)co 6813 ↑𝑚 cmap 8023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |