![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapdm0 | Structured version Visualization version GIF version |
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
Ref | Expression |
---|---|
mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4942 | . . . . 5 ⊢ ∅ ∈ V | |
2 | elmapg 8038 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) | |
3 | 1, 2 | mpan2 709 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓:∅⟶𝐵)) |
4 | f0bi 6249 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
5 | 3, 4 | syl6bb 276 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 = ∅)) |
6 | vex 3343 | . . . 4 ⊢ 𝑓 ∈ V | |
7 | 6 | elsn 4336 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) |
8 | 5, 7 | syl6bbr 278 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑𝑚 ∅) ↔ 𝑓 ∈ {∅})) |
9 | 8 | eqrdv 2758 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∅c0 4058 {csn 4321 ⟶wf 6045 (class class class)co 6814 ↑𝑚 cmap 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-map 8027 |
This theorem is referenced by: repr0 31019 mpct 39910 rrxtopn0 41034 qndenserrnbl 41036 hoicvr 41286 ovn02 41306 ovnhoi 41341 ovnlecvr2 41348 hoiqssbl 41363 hoimbl 41369 |
Copyright terms: Public domain | W3C validator |