Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp2 Structured version   Visualization version   GIF version

Theorem mapdindp2 37504
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp2 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))

Proof of Theorem mapdindp2
StepHypRef Expression
1 preq2 4405 . . . . . 6 ((𝑌 + 𝑍) = 0 → {𝑋, (𝑌 + 𝑍)} = {𝑋, 0 })
21fveq2d 6348 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 0 }))
3 mapdindp1.v . . . . . 6 𝑉 = (Base‘𝑊)
4 mapdindp1.o . . . . . 6 0 = (0g𝑊)
5 mapdindp1.n . . . . . 6 𝑁 = (LSpan‘𝑊)
6 mapdindp1.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
7 lveclmod 19300 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
9 mapdindp1.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3719 . . . . . 6 (𝜑𝑋𝑉)
113, 4, 5, 8, 10lsppr0 19286 . . . . 5 (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋}))
122, 11sylan9eqr 2808 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋}))
13 mapdindp1.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3719 . . . . . . 7 (𝜑𝑌𝑉)
15 prssi 4490 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
1610, 14, 15syl2anc 696 . . . . . 6 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
17 snsspr1 4482 . . . . . . 7 {𝑋} ⊆ {𝑋, 𝑌}
1817a1i 11 . . . . . 6 (𝜑 → {𝑋} ⊆ {𝑋, 𝑌})
193, 5lspss 19178 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
208, 16, 18, 19syl3anc 1473 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
2120adantr 472 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
2212, 21eqsstrd 3772 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑋, 𝑌}))
23 mapdindp1.f . . . 4 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2423adantr 472 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2522, 24ssneldd 3739 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
2623adantr 472 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
27 mapdindp1.p . . . . . 6 + = (+g𝑊)
286adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec)
299adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3013adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 }))
31 mapdindp1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3231adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 }))
33 mapdindp1.W . . . . . . 7 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
3433adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
35 mapdindp1.e . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
3635adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
37 mapdindp1.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3837adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
39 simpr 479 . . . . . 6 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 )
403, 27, 4, 5, 28, 29, 30, 32, 34, 36, 38, 26, 39mapdindp0 37502 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
4140oveq2d 6821 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
42 eqid 2752 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
4331eldifad 3719 . . . . . . 7 (𝜑𝑍𝑉)
443, 27lmodvacl 19071 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
458, 14, 43, 44syl3anc 1473 . . . . . 6 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
463, 5, 42, 8, 10, 45lsmpr 19283 . . . . 5 (𝜑 → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})))
4746adantr 472 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑌 + 𝑍)})))
483, 5, 42, 8, 10, 14lsmpr 19283 . . . . 5 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
4948adantr 472 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
5041, 47, 493eqtr4d 2796 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋, (𝑌 + 𝑍)}) = (𝑁‘{𝑋, 𝑌}))
5126, 50neleqtrrd 2853 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
5225, 51pm2.61dane 3011 1 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1624  wcel 2131  wne 2924  cdif 3704  wss 3707  {csn 4313  {cpr 4315  cfv 6041  (class class class)co 6805  Basecbs 16051  +gcplusg 16135  0gc0g 16294  LSSumclsm 18241  LModclmod 19057  LSpanclspn 19165  LVecclvec 19296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-subg 17784  df-cntz 17942  df-lsm 18243  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-oppr 18815  df-dvdsr 18833  df-unit 18834  df-invr 18864  df-drng 18943  df-lmod 19059  df-lss 19127  df-lsp 19166  df-lvec 19297
This theorem is referenced by:  mapdh6dN  37522  hdmap1l6d  37597
  Copyright terms: Public domain W3C validator