Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq4lem Structured version   Visualization version   GIF version

Theorem mapdheq4lem 37540
Description: Lemma for mapdheq4 37541. Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe4.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
mapdheq4lem (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥   ,𝐸   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq4lem
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2760 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 36919 . . . . 5 (𝜑𝑈 ∈ LMod)
7 mapdhe4.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3727 . . . . . 6 (𝜑𝑌𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 mapdh.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 19199 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 696 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 mapdhe.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3727 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 19199 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 696 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2760 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 19305 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1477 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 mapdhcl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3727 . . . . . . 7 (𝜑𝑋𝑉)
22 mapdh.s . . . . . . . 8 = (-g𝑈)
239, 22lmodvsubcl 19130 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
246, 21, 8, 23syl3anc 1477 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
259, 4, 10lspsncl 19199 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
266, 24, 25syl2anc 696 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
279, 22lmodvsubcl 19130 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
286, 21, 14, 27syl3anc 1477 . . . . . 6 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
299, 4, 10lspsncl 19199 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
306, 28, 29syl2anc 696 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
314, 17lsmcl 19305 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})) ∈ (LSubSp‘𝑈))
326, 26, 30, 31syl3anc 1477 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})) ∈ (LSubSp‘𝑈))
331, 2, 3, 4, 5, 19, 32mapdin 37471 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))))
34 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
35 eqid 2760 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
361, 2, 3, 4, 17, 34, 35, 5, 12, 16mapdlsm 37473 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
37 mapdh.eg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
38 mapdh.q . . . . . . . . 9 𝑄 = (0g𝐶)
39 mapdh.i . . . . . . . . 9 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
40 mapdhc.o . . . . . . . . 9 0 = (0g𝑈)
41 mapdh.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
42 mapdh.r . . . . . . . . 9 𝑅 = (-g𝐶)
43 mapdh.j . . . . . . . . 9 𝐽 = (LSpan‘𝐶)
44 mapdhc.f . . . . . . . . 9 (𝜑𝐹𝐷)
45 mapdh.mn . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
461, 3, 5dvhlvec 36918 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
47 mapdh.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 mapdh.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
499, 40, 10, 46, 8, 13, 21, 47, 48lspindp2 19357 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5049simpld 477 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 8, 50mapdhcl 37536 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5237, 51eqeltrrd 2840 . . . . . . . . 9 (𝜑𝐺𝐷)
5338, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 7, 52, 50mapdheq 37537 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
5437, 53mpbid 222 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
5554simpld 477 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
56 mapdh.ee . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
579, 40, 10, 46, 7, 14, 21, 47, 48lspindp1 19355 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5857simpld 477 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
5938, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 14, 58mapdhcl 37536 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6056, 59eqeltrrd 2840 . . . . . . . . 9 (𝜑𝐸𝐷)
6138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 13, 60, 58mapdheq 37537 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))))
6256, 61mpbid 222 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})))
6362simpld 477 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}))
6455, 63oveq12d 6832 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
6536, 64eqtrd 2794 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
661, 2, 3, 4, 17, 34, 35, 5, 26, 30mapdlsm 37473 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))) = ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑍)}))))
6754simprd 482 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))
6862simprd 482 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))
6967, 68oveq12d 6832 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑍)}))) = ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)})))
7066, 69eqtrd 2794 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))) = ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)})))
7165, 70ineq12d 3958 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
7233, 71eqtrd 2794 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
739, 22, 40, 17, 10, 46, 21, 48, 47, 7, 13baerlem3 37522 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))))
7473fveq2d 6357 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))))
75 eqid 2760 . . 3 (0g𝐶) = (0g𝐶)
761, 34, 5lcdlvec 37400 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 34, 41, 43, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 37480 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 37479 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝐸}))
791, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 40, 75, 7mapdn0 37478 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {(0g𝐶)}))
801, 2, 3, 9, 10, 34, 41, 43, 5, 60, 63, 40, 75, 13mapdn0 37478 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {(0g𝐶)}))
8141, 42, 75, 35, 43, 76, 44, 77, 78, 79, 80baerlem3 37522 . 2 (𝜑 → (𝐽‘{(𝐺𝑅𝐸)}) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
8272, 74, 813eqtr4d 2804 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  cdif 3712  cin 3714  ifcif 4230  {csn 4321  {cpr 4323  cotp 4329  cmpt 4881  cfv 6049  crio 6774  (class class class)co 6814  1st c1st 7332  2nd c2nd 7333  Basecbs 16079  0gc0g 16322  -gcsg 17645  LSSumclsm 18269  LModclmod 19085  LSubSpclss 19154  LSpanclspn 19193  HLchlt 35158  LHypclh 35791  DVecHcdvh 36887  LCDualclcd 37395  mapdcmpd 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-undef 7569  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-0g 16324  df-mre 16468  df-mrc 16469  df-acs 16471  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-cntz 17970  df-oppg 17996  df-lsm 18271  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-drng 18971  df-lmod 19087  df-lss 19155  df-lsp 19194  df-lvec 19325  df-lsatoms 34784  df-lshyp 34785  df-lcv 34827  df-lfl 34866  df-lkr 34894  df-ldual 34932  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35305  df-lplanes 35306  df-lvols 35307  df-lines 35308  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967  df-tgrp 36551  df-tendo 36563  df-edring 36565  df-dveca 36811  df-disoa 36838  df-dvech 36888  df-dib 36948  df-dic 36982  df-dih 37038  df-doch 37157  df-djh 37204  df-lcdual 37396  df-mapd 37434
This theorem is referenced by:  mapdheq4  37541
  Copyright terms: Public domain W3C validator