Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8e Structured version   Visualization version   GIF version

Theorem mapdh8e 37575
Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8e.f (𝜑𝐹𝐷)
mapdh8e.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8e.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8e.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8e.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8e.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8e.xt (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8e.yt (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8e.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
Assertion
Ref Expression
mapdh8e (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8e
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdh8e.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3727 . . 3 (𝜑𝑋𝑉)
8 mapdh8e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3727 . . 3 (𝜑𝑌𝑉)
101, 2, 3, 4, 5, 7, 9dvh3dim 37237 . 2 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
11 mapdh8a.s . . . 4 = (-g𝑈)
12 mapdh8a.o . . . 4 0 = (0g𝑈)
13 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
15 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
16 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
17 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
18 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
19 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2053ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 mapdh8e.f . . . . 5 (𝜑𝐹𝐷)
22213ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹𝐷)
23 mapdh8e.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
24233ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
25 mapdh8e.eg . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
26253ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
2763ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2883ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
29 mapdh8e.t . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
30293ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
31 mapdh8e.yt . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
32313ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
33 eqid 2760 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
341, 2, 5dvhlmod 36901 . . . . . 6 (𝜑𝑈 ∈ LMod)
35343ad2ant1 1128 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
363, 33, 4, 34, 7, 9lspprcl 19180 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
37363ad2ant1 1128 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
38 simp2 1132 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤𝑉)
39 simp3 1133 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
403, 12, 33, 35, 37, 38, 39lssneln0 19154 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
411, 2, 5dvhlvec 36900 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
4229eldifad 3727 . . . . . . . . 9 (𝜑𝑇𝑉)
43 mapdh8e.xy . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
44 mapdh8e.e . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
45 prcom 4411 . . . . . . . . . . 11 {𝑌, 𝑇} = {𝑇, 𝑌}
4645fveq2i 6355 . . . . . . . . . 10 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌})
4744, 46syl6eleq 2849 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑁‘{𝑇, 𝑌}))
483, 12, 4, 41, 6, 42, 9, 43, 47lspexch 19331 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝑋, 𝑌}))
4933, 4, 34, 36, 48lspsnel5a 19198 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
50493ad2ant1 1128 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
5134adantr 472 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑈 ∈ LMod)
5236adantr 472 . . . . . . . . . 10 ((𝜑𝑤𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
53 simpr 479 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑤𝑉)
543, 33, 4, 51, 52, 53lspsnel5 19197 . . . . . . . . 9 ((𝜑𝑤𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
5554biimprd 238 . . . . . . . 8 ((𝜑𝑤𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5655con3d 148 . . . . . . 7 ((𝜑𝑤𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
57563impia 1110 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
58 nssne2 3803 . . . . . 6 (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
5950, 57, 58syl2anc 696 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
6059necomd 2987 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
61 mapdh8e.xt . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
62613ad2ant1 1128 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
63413ad2ant1 1128 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec)
6473ad2ant1 1128 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋𝑉)
6593ad2ant1 1128 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌𝑉)
663, 4, 63, 38, 64, 65, 39lspindpi 19334 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
6766simprd 482 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
6867necomd 2987 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
69433ad2ant1 1128 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
703, 12, 4, 63, 27, 65, 38, 69, 39lspindp2l 19336 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})))
7170simprd 482 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
721, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71mapdh8d 37574 . . 3 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
7372rexlimdv3a 3171 . 2 (𝜑 → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩)))
7410, 73mpd 15 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051  Vcvv 3340  cdif 3712  wss 3715  ifcif 4230  {csn 4321  {cpr 4323  cotp 4329  cmpt 4881  cfv 6049  crio 6773  (class class class)co 6813  1st c1st 7331  2nd c2nd 7332  Basecbs 16059  0gc0g 16302  -gcsg 17625  LModclmod 19065  LSubSpclss 19134  LSpanclspn 19173  LVecclvec 19304  HLchlt 35140  LHypclh 35773  DVecHcdvh 36869  LCDualclcd 37377  mapdcmpd 37415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-riotaBAD 34742
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-undef 7568  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-0g 16304  df-mre 16448  df-mrc 16449  df-acs 16451  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-cntz 17950  df-oppg 17976  df-lsm 18251  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-lmod 19067  df-lss 19135  df-lsp 19174  df-lvec 19305  df-lsatoms 34766  df-lshyp 34767  df-lcv 34809  df-lfl 34848  df-lkr 34876  df-ldual 34914  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949  df-tgrp 36533  df-tendo 36545  df-edring 36547  df-dveca 36793  df-disoa 36820  df-dvech 36870  df-dib 36930  df-dic 36964  df-dih 37020  df-doch 37139  df-djh 37186  df-lcdual 37378  df-mapd 37416
This theorem is referenced by:  mapdh8g  37577
  Copyright terms: Public domain W3C validator