Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8ab Structured version   Visualization version   GIF version

Theorem mapdh8ab 37383
 Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8ab.f (𝜑𝐹𝐷)
mapdh8ab.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8ab.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8ab.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh8ab.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh8ab.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh8ab.yn (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
Assertion
Ref Expression
mapdh8ab (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh8ab
StepHypRef Expression
1 mapdh8a.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . 2 𝑉 = (Base‘𝑈)
4 mapdh8a.s . 2 = (-g𝑈)
5 mapdh8a.o . 2 0 = (0g𝑈)
6 mapdh8a.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . 2 𝐷 = (Base‘𝐶)
9 mapdh8a.r . 2 𝑅 = (-g𝐶)
10 mapdh8a.q . 2 𝑄 = (0g𝐶)
11 mapdh8a.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh8ab.f . 2 (𝜑𝐹𝐷)
16 mapdh8ab.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdh8ab.eg . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
18 mapdh8ab.ee . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
19 mapdh8ab.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
20 mapdh8ab.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21 mapdh8ab.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
221, 2, 14dvhlvec 36715 . . . . . 6 (𝜑𝑈 ∈ LVec)
2319eldifad 3619 . . . . . 6 (𝜑𝑋𝑉)
2420eldifad 3619 . . . . . 6 (𝜑𝑌𝑉)
2521eldifad 3619 . . . . . 6 (𝜑𝑍𝑉)
26 mapdh8ab.xn . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
273, 6, 22, 23, 24, 25, 26lspindpi 19180 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simprd 478 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
2928necomd 2878 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}))
30 mapdh8ab.yn . . 3 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
3129, 30neeqtrd 2892 . 2 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
32 mapdh8ab.t . 2 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
3330sseq1d 3665 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍})))
34 eqid 2651 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 14dvhlmod 36716 . . . . . 6 (𝜑𝑈 ∈ LMod)
363, 34, 6, 35, 24, 25lspprcl 19026 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈))
373, 34, 6, 35, 36, 23lspsnel5 19043 . . . . 5 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
3832eldifad 3619 . . . . . 6 (𝜑𝑇𝑉)
393, 34, 6, 35, 36, 38lspsnel5 19043 . . . . 5 (𝜑 → (𝑇 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍})))
4033, 37, 393bitr4d 300 . . . 4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑇 ∈ (𝑁‘{𝑌, 𝑍})))
4126, 40mtbid 313 . . 3 (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))
4222adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec)
4320adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4438adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇𝑉)
4525adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑍𝑉)
46 mapdh8ab.yz . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4746adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 simpr 476 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
49 prcom 4299 . . . . . 6 {𝑍, 𝑇} = {𝑇, 𝑍}
5049fveq2i 6232 . . . . 5 (𝑁‘{𝑍, 𝑇}) = (𝑁‘{𝑇, 𝑍})
5148, 50syl6eleq 2740 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑍}))
523, 5, 6, 42, 43, 44, 45, 47, 51lspexch 19177 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))
5341, 52mtand 692 . 2 (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31, 32, 53, 26mapdh8aa 37382 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  Vcvv 3231   ∖ cdif 3604   ⊆ wss 3607  ifcif 4119  {csn 4210  {cpr 4212  ⟨cotp 4218   ↦ cmpt 4762  ‘cfv 5926  ℩crio 6650  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Basecbs 15904  0gc0g 16147  -gcsg 17471  LSubSpclss 18980  LSpanclspn 19019  LVecclvec 19150  HLchlt 34955  LHypclh 35588  DVecHcdvh 36684  LCDualclcd 37192  mapdcmpd 37230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-riotaBAD 34557 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-undef 7444  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-mre 16293  df-mrc 16294  df-acs 16296  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-cntz 17796  df-oppg 17822  df-lsm 18097  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lvec 19151  df-lsatoms 34581  df-lshyp 34582  df-lcv 34624  df-lfl 34663  df-lkr 34691  df-ldual 34729  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tgrp 36348  df-tendo 36360  df-edring 36362  df-dveca 36608  df-disoa 36635  df-dvech 36685  df-dib 36745  df-dic 36779  df-dih 36835  df-doch 36954  df-djh 37001  df-lcdual 37193  df-mapd 37231 This theorem is referenced by:  mapdh8ac  37384
 Copyright terms: Public domain W3C validator