Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh7dN Structured version   Visualization version   GIF version

Theorem mapdh7dN 37541
Description: Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh7.h 𝐻 = (LHyp‘𝐾)
mapdh7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh7.v 𝑉 = (Base‘𝑈)
mapdh7.s = (-g𝑈)
mapdh7.o 0 = (0g𝑈)
mapdh7.n 𝑁 = (LSpan‘𝑈)
mapdh7.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh7.d 𝐷 = (Base‘𝐶)
mapdh7.r 𝑅 = (-g𝐶)
mapdh7.q 𝑄 = (0g𝐶)
mapdh7.j 𝐽 = (LSpan‘𝐶)
mapdh7.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh7.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh7.f (𝜑𝐹𝐷)
mapdh7.mn (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
mapdh7.x (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
mapdh7.y (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
mapdh7.z (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh7.ne (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
mapdh7.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
mapdh7a (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
mapdh7.b (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
Assertion
Ref Expression
mapdh7dN (𝜑 → (𝐼‘⟨𝑣, 𝐺, 𝑤⟩) = 𝐸)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐸,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑢,,𝑣,𝑤,𝑥   𝑅,,𝑥   𝑈,
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑤,𝑣,𝑢)   𝐷(𝑤,𝑣,𝑢)   𝑄(𝑤,𝑣,𝑢,)   𝑅(𝑤,𝑣,𝑢)   𝑈(𝑥,𝑤,𝑣,𝑢)   𝐸(𝑤,𝑣,𝑢)   𝐹(𝑤,𝑣,𝑢)   𝐺(𝑤,𝑣,𝑢)   𝐻(𝑥,𝑤,𝑣,𝑢,)   𝐼(𝑥,𝑤,𝑣,𝑢,)   𝐽(𝑤,𝑣,𝑢)   𝐾(𝑥,𝑤,𝑣,𝑢,)   𝑀(𝑤,𝑣,𝑢)   (𝑤,𝑣,𝑢)   𝑁(𝑤,𝑣,𝑢)   𝑉(𝑥,𝑤,𝑣,𝑢,)   𝑊(𝑥,𝑤,𝑣,𝑢,)   0 (𝑤,𝑣,𝑢)

Proof of Theorem mapdh7dN
StepHypRef Expression
1 mapdh7.q . 2 𝑄 = (0g𝐶)
2 mapdh7.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh7.h . 2 𝐻 = (LHyp‘𝐾)
4 mapdh7.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh7.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh7.v . 2 𝑉 = (Base‘𝑈)
7 mapdh7.s . 2 = (-g𝑈)
8 mapdh7.o . 2 0 = (0g𝑈)
9 mapdh7.n . 2 𝑁 = (LSpan‘𝑈)
10 mapdh7.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh7.d . 2 𝐷 = (Base‘𝐶)
12 mapdh7.r . 2 𝑅 = (-g𝐶)
13 mapdh7.j . 2 𝐽 = (LSpan‘𝐶)
14 mapdh7.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh7.f . 2 (𝜑𝐹𝐷)
16 mapdh7.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
17 mapdh7.x . 2 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
18 mapdh7.y . 2 (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
19 mapdh7.z . 2 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
203, 5, 14dvhlvec 36900 . . . . 5 (𝜑𝑈 ∈ LVec)
2118eldifad 3727 . . . . 5 (𝜑𝑣𝑉)
2219eldifad 3727 . . . . 5 (𝜑𝑤𝑉)
23 mapdh7.ne . . . . 5 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
24 mapdh7.wn . . . . 5 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
256, 8, 9, 20, 17, 21, 22, 23, 24lspindp1 19335 . . . 4 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑣}) ∧ ¬ 𝑢 ∈ (𝑁‘{𝑤, 𝑣})))
2625simprd 482 . . 3 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑤, 𝑣}))
27 prcom 4411 . . . . 5 {𝑣, 𝑤} = {𝑤, 𝑣}
2827fveq2i 6355 . . . 4 (𝑁‘{𝑣, 𝑤}) = (𝑁‘{𝑤, 𝑣})
2928eleq2i 2831 . . 3 (𝑢 ∈ (𝑁‘{𝑣, 𝑤}) ↔ 𝑢 ∈ (𝑁‘{𝑤, 𝑣}))
3026, 29sylnibr 318 . 2 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣, 𝑤}))
3117eldifad 3727 . . . . 5 (𝜑𝑢𝑉)
326, 9, 20, 22, 31, 21, 24lspindpi 19334 . . . 4 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑢}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣})))
3332simprd 482 . . 3 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑣}))
3433necomd 2987 . 2 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑁‘{𝑤}))
35 mapdh7a . 2 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
36 mapdh7.b . 2 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑤⟩) = 𝐸)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 30, 34, 35, 36mapdheq4 37523 1 (𝜑 → (𝐼‘⟨𝑣, 𝐺, 𝑤⟩) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  cdif 3712  ifcif 4230  {csn 4321  {cpr 4323  cotp 4329  cmpt 4881  cfv 6049  crio 6773  (class class class)co 6813  1st c1st 7331  2nd c2nd 7332  Basecbs 16059  0gc0g 16302  -gcsg 17625  LSpanclspn 19173  HLchlt 35140  LHypclh 35773  DVecHcdvh 36869  LCDualclcd 37377  mapdcmpd 37415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-riotaBAD 34742
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-undef 7568  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-0g 16304  df-mre 16448  df-mrc 16449  df-acs 16451  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-cntz 17950  df-oppg 17976  df-lsm 18251  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-lmod 19067  df-lss 19135  df-lsp 19174  df-lvec 19305  df-lsatoms 34766  df-lshyp 34767  df-lcv 34809  df-lfl 34848  df-lkr 34876  df-ldual 34914  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949  df-tgrp 36533  df-tendo 36545  df-edring 36547  df-dveca 36793  df-disoa 36820  df-dvech 36870  df-dib 36930  df-dic 36964  df-dih 37020  df-doch 37139  df-djh 37186  df-lcdual 37378  df-mapd 37416
This theorem is referenced by:  mapdh7fN  37542
  Copyright terms: Public domain W3C validator