MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2psrpr Structured version   Visualization version   GIF version

Theorem map2psrpr 9891
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
map2psrpr.2 𝐶R
Assertion
Ref Expression
map2psrpr ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶

Proof of Theorem map2psrpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 9849 . . . . 5 <R ⊆ (R × R)
21brel 5138 . . . 4 ((𝐶 +R -1R) <R 𝐴 → ((𝐶 +R -1R) ∈ R𝐴R))
32simprd 479 . . 3 ((𝐶 +R -1R) <R 𝐴𝐴R)
4 map2psrpr.2 . . . . . 6 𝐶R
5 ltasr 9881 . . . . . 6 (𝐶R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
64, 5ax-mp 5 . . . . 5 (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
7 pn0sr 9882 . . . . . . . . . 10 (𝐶R → (𝐶 +R (𝐶 ·R -1R)) = 0R)
84, 7ax-mp 5 . . . . . . . . 9 (𝐶 +R (𝐶 ·R -1R)) = 0R
98oveq1i 6625 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴)
10 addasssr 9869 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))
11 addcomsr 9868 . . . . . . . 8 (0R +R 𝐴) = (𝐴 +R 0R)
129, 10, 113eqtr3i 2651 . . . . . . 7 (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = (𝐴 +R 0R)
13 0idsr 9878 . . . . . . 7 (𝐴R → (𝐴 +R 0R) = 𝐴)
1412, 13syl5eq 2667 . . . . . 6 (𝐴R → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = 𝐴)
1514breq2d 4635 . . . . 5 (𝐴R → ((𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) ↔ (𝐶 +R -1R) <R 𝐴))
166, 15syl5bb 272 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R 𝐴))
17 m1r 9863 . . . . . . . 8 -1RR
18 mulclsr 9865 . . . . . . . 8 ((𝐶R ∧ -1RR) → (𝐶 ·R -1R) ∈ R)
194, 17, 18mp2an 707 . . . . . . 7 (𝐶 ·R -1R) ∈ R
20 addclsr 9864 . . . . . . 7 (((𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
2119, 20mpan 705 . . . . . 6 (𝐴R → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
22 df-nr 9838 . . . . . . 7 R = ((P × P) / ~R )
23 breq2 4627 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ -1R <R ((𝐶 ·R -1R) +R 𝐴)))
24 eqeq2 2632 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2524rexbidv 3047 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2623, 25imbi12d 334 . . . . . . 7 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ((-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ) ↔ (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴))))
27 df-m1r 9844 . . . . . . . . . . 11 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2827breq1i 4630 . . . . . . . . . 10 (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R )
29 addasspr 9804 . . . . . . . . . . . 12 ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦))
3029breq2i 4631 . . . . . . . . . . 11 ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
31 ltsrpr 9858 . . . . . . . . . . 11 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦))
32 1pr 9797 . . . . . . . . . . . 12 1PP
33 ltapr 9827 . . . . . . . . . . . 12 (1PP → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
3432, 33ax-mp 5 . . . . . . . . . . 11 (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
3530, 31, 343bitr4i 292 . . . . . . . . . 10 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
3628, 35bitri 264 . . . . . . . . 9 (-1R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
37 ltexpri 9825 . . . . . . . . 9 (𝑧<P (1P +P 𝑦) → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
3836, 37sylbi 207 . . . . . . . 8 (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
39 enreceq 9847 . . . . . . . . . . . 12 (((𝑥P ∧ 1PP) ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
4032, 39mpanl2 716 . . . . . . . . . . 11 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
41 addcompr 9803 . . . . . . . . . . . 12 (𝑧 +P 𝑥) = (𝑥 +P 𝑧)
4241eqeq1i 2626 . . . . . . . . . . 11 ((𝑧 +P 𝑥) = (1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P +P 𝑦))
4340, 42syl6bbr 278 . . . . . . . . . 10 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4443ancoms 469 . . . . . . . . 9 (((𝑦P𝑧P) ∧ 𝑥P) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4544rexbidva 3044 . . . . . . . 8 ((𝑦P𝑧P) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
4638, 45syl5ibr 236 . . . . . . 7 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ))
4722, 26, 46ecoptocl 7797 . . . . . 6 (((𝐶 ·R -1R) +R 𝐴) ∈ R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
4821, 47syl 17 . . . . 5 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
49 oveq2 6623 . . . . . . . 8 ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
5049, 14sylan9eqr 2677 . . . . . . 7 ((𝐴R ∧ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
5150ex 450 . . . . . 6 (𝐴R → ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5251reximdv 3012 . . . . 5 (𝐴R → (∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5348, 52syld 47 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5416, 53sylbird 250 . . 3 (𝐴R → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
553, 54mpcom 38 . 2 ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
564mappsrpr 9889 . . . . 5 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ 𝑥P)
57 breq2 4627 . . . . 5 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ (𝐶 +R -1R) <R 𝐴))
5856, 57syl5bbr 274 . . . 4 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝑥P ↔ (𝐶 +R -1R) <R 𝐴))
5958biimpac 503 . . 3 ((𝑥P ∧ (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴) → (𝐶 +R -1R) <R 𝐴)
6059rexlimiva 3023 . 2 (∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴)
6155, 60impbii 199 1 ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2909  cop 4161   class class class wbr 4623  (class class class)co 6615  [cec 7700  Pcnp 9641  1Pc1p 9642   +P cpp 9643  <P cltp 9645   ~R cer 9646  Rcnr 9647  0Rc0r 9648  -1Rcm1r 9650   +R cplr 9651   ·R cmr 9652   <R cltr 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-omul 7525  df-er 7702  df-ec 7704  df-qs 7708  df-ni 9654  df-pli 9655  df-mi 9656  df-lti 9657  df-plpq 9690  df-mpq 9691  df-ltpq 9692  df-enq 9693  df-nq 9694  df-erq 9695  df-plq 9696  df-mq 9697  df-1nq 9698  df-rq 9699  df-ltnq 9700  df-np 9763  df-1p 9764  df-plp 9765  df-mp 9766  df-ltp 9767  df-enr 9837  df-nr 9838  df-plr 9839  df-mr 9840  df-ltr 9841  df-0r 9842  df-1r 9843  df-m1r 9844
This theorem is referenced by:  supsrlem  9892
  Copyright terms: Public domain W3C validator