![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map0g | Structured version Visualization version GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4066 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ 𝐴) | |
2 | fconst6g 6247 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}):𝐵⟶𝐴) | |
3 | elmapg 8028 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝐵 × {𝑓}):𝐵⟶𝐴)) | |
4 | 2, 3 | syl5ibr 236 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵))) |
5 | ne0i 4056 | . . . . . . 7 ⊢ ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
6 | 4, 5 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
7 | 6 | exlimdv 2002 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑓 𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
8 | 1, 7 | syl5bi 232 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ ∅ → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
9 | 8 | necon4d 2948 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐴 = ∅)) |
10 | f0 6239 | . . . . . . 7 ⊢ ∅:∅⟶𝐴 | |
11 | feq2 6180 | . . . . . . 7 ⊢ (𝐵 = ∅ → (∅:𝐵⟶𝐴 ↔ ∅:∅⟶𝐴)) | |
12 | 10, 11 | mpbiri 248 | . . . . . 6 ⊢ (𝐵 = ∅ → ∅:𝐵⟶𝐴) |
13 | elmapg 8028 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∅ ∈ (𝐴 ↑𝑚 𝐵) ↔ ∅:𝐵⟶𝐴)) | |
14 | 12, 13 | syl5ibr 236 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴 ↑𝑚 𝐵))) |
15 | ne0i 4056 | . . . . 5 ⊢ (∅ ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
16 | 14, 15 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
17 | 16 | necon2d 2947 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐵 ≠ ∅)) |
18 | 9, 17 | jcad 556 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
19 | oveq1 6812 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ↑𝑚 𝐵) = (∅ ↑𝑚 𝐵)) | |
20 | map0b 8054 | . . 3 ⊢ (𝐵 ≠ ∅ → (∅ ↑𝑚 𝐵) = ∅) | |
21 | 19, 20 | sylan9eq 2806 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴 ↑𝑚 𝐵) = ∅) |
22 | 18, 21 | impbid1 215 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∃wex 1845 ∈ wcel 2131 ≠ wne 2924 ∅c0 4050 {csn 4313 × cxp 5256 ⟶wf 6037 (class class class)co 6805 ↑𝑚 cmap 8015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-1st 7325 df-2nd 7326 df-map 8017 |
This theorem is referenced by: map0 8056 mapdom2 8288 |
Copyright terms: Public domain | W3C validator |