Step | Hyp | Ref
| Expression |
1 | | df-ov 6768 |
. . . . . . . . . 10
⊢ (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘) = ((((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)‘〈𝑗, 𝑘〉) |
2 | | simpr 479 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
3 | | simplrr 820 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑂) |
4 | | opelxpi 5257 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
5 | 2, 3, 4 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
6 | | mamuvs2.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ Fin) |
7 | | mamuvs2.o |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 ∈ Fin) |
8 | | xpfi 8347 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin) |
9 | 6, 7, 8 | syl2anc 696 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 × 𝑂) ∈ Fin) |
10 | 9 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑁 × 𝑂) ∈ Fin) |
11 | | mamuvs2.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
12 | 11 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
13 | | mamuvs2.z |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
14 | | elmapi 7996 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
15 | | ffn 6158 |
. . . . . . . . . . . . . 14
⊢ (𝑍:(𝑁 × 𝑂)⟶𝐵 → 𝑍 Fn (𝑁 × 𝑂)) |
16 | 13, 14, 15 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 Fn (𝑁 × 𝑂)) |
17 | 16 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍 Fn (𝑁 × 𝑂)) |
18 | | df-ov 6768 |
. . . . . . . . . . . . . 14
⊢ (𝑗𝑍𝑘) = (𝑍‘〈𝑗, 𝑘〉) |
19 | 18 | eqcomi 2733 |
. . . . . . . . . . . . 13
⊢ (𝑍‘〈𝑗, 𝑘〉) = (𝑗𝑍𝑘) |
20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) → (𝑍‘〈𝑗, 𝑘〉) = (𝑗𝑍𝑘)) |
21 | 10, 12, 17, 20 | ofc1 7037 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) → ((((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)‘〈𝑗, 𝑘〉) = (𝑌 · (𝑗𝑍𝑘))) |
22 | 5, 21 | mpdan 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)‘〈𝑗, 𝑘〉) = (𝑌 · (𝑗𝑍𝑘))) |
23 | 1, 22 | syl5eq 2770 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘) = (𝑌 · (𝑗𝑍𝑘))) |
24 | 23 | oveq2d 6781 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)) = ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘)))) |
25 | | mamuvs2.r |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CRing) |
26 | | eqid 2724 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
27 | 26 | crngmgp 18676 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
28 | 25, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
29 | 28 | ad2antrr 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (mulGrp‘𝑅) ∈ CMnd) |
30 | | mamuvs2.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
31 | | elmapi 7996 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
33 | 32 | ad2antrr 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
34 | | simplrl 819 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
35 | 33, 34, 2 | fovrnd 6923 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
36 | 13, 14 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
37 | 36 | ad2antrr 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
38 | 37, 2, 3 | fovrnd 6923 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑍𝑘) ∈ 𝐵) |
39 | | mamuvs2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
40 | 26, 39 | mgpbas 18616 |
. . . . . . . . . 10
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
41 | | mamuvs2.t |
. . . . . . . . . . 11
⊢ · =
(.r‘𝑅) |
42 | 26, 41 | mgpplusg 18614 |
. . . . . . . . . 10
⊢ · =
(+g‘(mulGrp‘𝑅)) |
43 | 40, 42 | cmn12 18334 |
. . . . . . . . 9
⊢
(((mulGrp‘𝑅)
∈ CMnd ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))) |
44 | 29, 35, 12, 38, 43 | syl13anc 1441 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))) |
45 | 24, 44 | eqtrd 2758 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))) |
46 | 45 | mpteq2dva 4852 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘))) = (𝑗 ∈ 𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
47 | 46 | oveq2d 6781 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
48 | | eqid 2724 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
49 | | eqid 2724 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
50 | | crngring 18679 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
51 | 25, 50 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
52 | 51 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ Ring) |
53 | 6 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑁 ∈ Fin) |
54 | 11 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑌 ∈ 𝐵) |
55 | 51 | ad2antrr 764 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
56 | 39, 41 | ringcl 18682 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵) |
57 | 55, 35, 38, 56 | syl3anc 1439 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵) |
58 | | eqid 2724 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) |
59 | | ovexd 6795 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ V) |
60 | | fvex 6314 |
. . . . . . . 8
⊢
(0g‘𝑅) ∈ V |
61 | 60 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (0g‘𝑅) ∈ V) |
62 | 58, 53, 59, 61 | fsuppmptdm 8402 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) finSupp (0g‘𝑅)) |
63 | 39, 48, 49, 41, 52, 53, 54, 57, 62 | gsummulc2 18728 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
64 | 47, 63 | eqtrd 2758 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)))) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
65 | | mamuvs2.f |
. . . . 5
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) |
66 | 25 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ CRing) |
67 | | mamuvs2.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
68 | 67 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑀 ∈ Fin) |
69 | 7 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑂 ∈ Fin) |
70 | 30 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
71 | | fconst6g 6207 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝐵 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵) |
72 | 11, 71 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵) |
73 | | fvex 6314 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
74 | 39, 73 | eqeltri 2799 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
75 | | elmapg 7987 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ (𝑁 × 𝑂) ∈ Fin) → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)) |
76 | 74, 9, 75 | sylancr 698 |
. . . . . . . 8
⊢ (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)) |
77 | 72, 76 | mpbird 247 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
78 | 39, 41 | ringvcl 20327 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) → (((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
79 | 51, 77, 13, 78 | syl3anc 1439 |
. . . . . 6
⊢ (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
80 | 79 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
81 | | simprl 811 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑖 ∈ 𝑀) |
82 | | simprr 813 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑘 ∈ 𝑂) |
83 | 65, 39, 41, 66, 68, 53, 69, 70, 80, 81, 82 | mamufv 20316 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘))))) |
84 | | df-ov 6768 |
. . . . 5
⊢ (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) |
85 | | opelxpi 5257 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
86 | 85 | adantl 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
87 | | xpfi 8347 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin) |
88 | 67, 7, 87 | syl2anc 696 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 × 𝑂) ∈ Fin) |
89 | 88 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑀 × 𝑂) ∈ Fin) |
90 | 39, 51, 65, 67, 6, 7, 30, 13 | mamucl 20330 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
91 | | elmapi 7996 |
. . . . . . . . 9
⊢ ((𝑋𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
92 | | ffn 6158 |
. . . . . . . . 9
⊢ ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
93 | 90, 91, 92 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
94 | 93 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
95 | | df-ov 6768 |
. . . . . . . . 9
⊢ (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) |
96 | 13 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
97 | 65, 39, 41, 66, 68, 53, 69, 70, 96, 81, 82 | mamufv 20316 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
98 | 95, 97 | syl5eqr 2772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
99 | 98 | adantr 472 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
100 | 89, 54, 94, 99 | ofc1 7037 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
101 | 86, 100 | mpdan 705 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
102 | 84, 101 | syl5eq 2770 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
103 | 64, 83, 102 | 3eqtr4d 2768 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘)) |
104 | 103 | ralrimivva 3073 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘)) |
105 | 39, 51, 65, 67, 6, 7, 30, 79 | mamucl 20330 |
. . . 4
⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
106 | | elmapi 7996 |
. . . 4
⊢ ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)):(𝑀 × 𝑂)⟶𝐵) |
107 | | ffn 6158 |
. . . 4
⊢ ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) Fn (𝑀 × 𝑂)) |
108 | 105, 106,
107 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) Fn (𝑀 × 𝑂)) |
109 | | fconst6g 6207 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐵 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵) |
110 | 11, 109 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵) |
111 | | elmapg 7987 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)) |
112 | 74, 88, 111 | sylancr 698 |
. . . . . 6
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)) |
113 | 110, 112 | mpbird 247 |
. . . . 5
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
114 | 39, 41 | ringvcl 20327 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
115 | 51, 113, 90, 114 | syl3anc 1439 |
. . . 4
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
116 | | elmapi 7996 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵) |
117 | | ffn 6158 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
118 | 115, 116,
117 | 3syl 18 |
. . 3
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
119 | | eqfnov2 6884 |
. . 3
⊢ (((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘))) |
120 | 108, 118,
119 | syl2anc 696 |
. 2
⊢ (𝜑 → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘))) |
121 | 104, 120 | mpbird 247 |
1
⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))) |