![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamumat1cl | Structured version Visualization version GIF version |
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
Ref | Expression |
---|---|
mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
Ref | Expression |
---|---|
mamumat1cl | ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamumat1cl.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | mamumat1cl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mamumat1cl.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 18760 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
5 | mamumat1cl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | ring0cl 18761 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
7 | 4, 6 | ifcld 4267 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
10 | 9 | ralrimivva 3101 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
11 | mamumat1cl.i | . . . 4 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
12 | 11 | fmpt2 7397 | . . 3 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵 ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵) |
13 | 10, 12 | sylib 208 | . 2 ⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
14 | fvex 6354 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
15 | 2, 14 | eqeltri 2827 | . . 3 ⊢ 𝐵 ∈ V |
16 | mamumat1cl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
17 | xpfi 8388 | . . . 4 ⊢ ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin) | |
18 | 16, 16, 17 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝑀 × 𝑀) ∈ Fin) |
19 | elmapg 8028 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) | |
20 | 15, 18, 19 | sylancr 698 | . 2 ⊢ (𝜑 → (𝐼 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) |
21 | 13, 20 | mpbird 247 | 1 ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 Vcvv 3332 ifcif 4222 × cxp 5256 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 ↦ cmpt2 6807 ↑𝑚 cmap 8015 Fincfn 8113 Basecbs 16051 0gc0g 16294 1rcur 18693 Ringcrg 18739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-plusg 16148 df-0g 16296 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-grp 17618 df-mgp 18682 df-ur 18694 df-ring 18741 |
This theorem is referenced by: mamulid 20441 mamurid 20442 matring 20443 mat1 20447 |
Copyright terms: Public domain | W3C validator |