MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamulid Structured version   Visualization version   GIF version

Theorem mamulid 20241
Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamulid.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
mamulid.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
Assertion
Ref Expression
mamulid (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamulid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamulid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2621 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Ring)
6 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
76adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑀 ∈ Fin)
8 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
98adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑁 ∈ Fin)
10 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
11 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
12 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
132, 4, 10, 11, 12, 6mamumat1cl 20239 . . . . . 6 (𝜑𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
1413adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
15 mamulid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
1615adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
17 simprl 794 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑙𝑀)
18 simprr 796 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑘𝑁)
191, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18mamufv 20187 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))))
20 ringmnd 18550 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Mnd)
224ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑅 ∈ Ring)
23 elmapi 7876 . . . . . . . . . 10 (𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
2413, 23syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
2524ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
26 simplrl 800 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑙𝑀)
27 simpr 477 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑚𝑀)
2825, 26, 27fovrnd 6803 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑙𝐼𝑚) ∈ 𝐵)
29 elmapi 7876 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3130ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
32 simplrr 801 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑘𝑁)
3331, 27, 32fovrnd 6803 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑚𝑋𝑘) ∈ 𝐵)
342, 3ringcl 18555 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝐼𝑚) ∈ 𝐵 ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1325 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
36 eqid 2621 . . . . . 6 (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) = (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))
3735, 36fmptd 6383 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))):𝑀𝐵)
38263adant3 1080 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑙𝑀)
39 simp2 1061 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑚𝑀)
402, 4, 10, 11, 12, 6mat1comp 20240 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑙 = 𝑚, 1 , 0 ))
41 equcom 1944 . . . . . . . . . . . . 13 (𝑙 = 𝑚𝑚 = 𝑙)
4241a1i 11 . . . . . . . . . . . 12 ((𝑙𝑀𝑚𝑀) → (𝑙 = 𝑚𝑚 = 𝑙))
4342ifbid 4106 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → if(𝑙 = 𝑚, 1 , 0 ) = if(𝑚 = 𝑙, 1 , 0 ))
4440, 43eqtrd 2655 . . . . . . . . . 10 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
4538, 39, 44syl2anc 693 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
46 ifnefalse 4096 . . . . . . . . . 10 (𝑚𝑙 → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
47463ad2ant3 1083 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
4845, 47eqtrd 2655 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = 0 )
4948oveq1d 6662 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ( 0 (.r𝑅)(𝑚𝑋𝑘)))
502, 3, 11ringlz 18581 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5122, 33, 50syl2anc 693 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
52513adant3 1080 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5349, 52eqtrd 2655 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = 0 )
5453, 7suppsssn 7327 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) supp 0 ) ⊆ {𝑙})
552, 11, 21, 7, 17, 37, 54gsumpt 18355 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))) = ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙))
56 oveq2 6655 . . . . . . . 8 (𝑚 = 𝑙 → (𝑙𝐼𝑚) = (𝑙𝐼𝑙))
57 oveq1 6654 . . . . . . . 8 (𝑚 = 𝑙 → (𝑚𝑋𝑘) = (𝑙𝑋𝑘))
5856, 57oveq12d 6665 . . . . . . 7 (𝑚 = 𝑙 → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
59 ovex 6675 . . . . . . 7 ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) ∈ V
6058, 36, 59fvmpt 6280 . . . . . 6 (𝑙𝑀 → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
6160ad2antrl 764 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
62 equequ1 1951 . . . . . . . . . 10 (𝑖 = 𝑙 → (𝑖 = 𝑗𝑙 = 𝑗))
6362ifbid 4106 . . . . . . . . 9 (𝑖 = 𝑙 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑗, 1 , 0 ))
64 equequ2 1952 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑙 = 𝑗𝑙 = 𝑙))
6564ifbid 4106 . . . . . . . . . 10 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑙, 1 , 0 ))
66 equid 1938 . . . . . . . . . . 11 𝑙 = 𝑙
6766iftruei 4091 . . . . . . . . . 10 if(𝑙 = 𝑙, 1 , 0 ) = 1
6865, 67syl6eq 2671 . . . . . . . . 9 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = 1 )
69 fvex 6199 . . . . . . . . . 10 (1r𝑅) ∈ V
7010, 69eqeltri 2696 . . . . . . . . 9 1 ∈ V
7163, 68, 12, 70ovmpt2 6793 . . . . . . . 8 ((𝑙𝑀𝑙𝑀) → (𝑙𝐼𝑙) = 1 )
7271anidms 677 . . . . . . 7 (𝑙𝑀 → (𝑙𝐼𝑙) = 1 )
7372ad2antrl 764 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝐼𝑙) = 1 )
7473oveq1d 6662 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) = ( 1 (.r𝑅)(𝑙𝑋𝑘)))
7530fovrnda 6802 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝑋𝑘) ∈ 𝐵)
762, 3, 10ringlidm 18565 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
775, 75, 76syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
7861, 74, 773eqtrd 2659 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = (𝑙𝑋𝑘))
7919, 55, 783eqtrd 2659 . . 3 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
8079ralrimivva 2970 . 2 (𝜑 → ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
812, 4, 1, 6, 6, 8, 13, 15mamucl 20201 . . . . 5 (𝜑 → (𝐼𝐹𝑋) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
82 elmapi 7876 . . . . 5 ((𝐼𝐹𝑋) ∈ (𝐵𝑚 (𝑀 × 𝑁)) → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8381, 82syl 17 . . . 4 (𝜑 → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
84 ffn 6043 . . . 4 ((𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁))
8583, 84syl 17 . . 3 (𝜑 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁))
86 ffn 6043 . . . 4 (𝑋:(𝑀 × 𝑁)⟶𝐵𝑋 Fn (𝑀 × 𝑁))
8730, 86syl 17 . . 3 (𝜑𝑋 Fn (𝑀 × 𝑁))
88 eqfnov2 6764 . . 3 (((𝐼𝐹𝑋) Fn (𝑀 × 𝑁) ∧ 𝑋 Fn (𝑀 × 𝑁)) → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8985, 87, 88syl2anc 693 . 2 (𝜑 → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
9080, 89mpbird 247 1 (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wcel 1989  wne 2793  wral 2911  Vcvv 3198  ifcif 4084  cotp 4183  cmpt 4727   × cxp 5110   Fn wfn 5881  wf 5882  cfv 5886  (class class class)co 6647  cmpt2 6649  𝑚 cmap 7854  Fincfn 7952  Basecbs 15851  .rcmulr 15936  0gc0g 16094   Σg cgsu 16095  Mndcmnd 17288  1rcur 18495  Ringcrg 18541   maMul cmmul 20183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-ot 4184  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-fzo 12462  df-seq 12797  df-hash 13113  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-0g 16096  df-gsum 16097  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-grp 17419  df-minusg 17420  df-mulg 17535  df-cntz 17744  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-mamu 20184
This theorem is referenced by:  matring  20243  mat1  20247
  Copyright terms: Public domain W3C validator