MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudir Structured version   Visualization version   GIF version

Theorem mamudir 20432
Description: Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamudir.p + = (+g𝑅)
mamudir.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamudir.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
mamudir.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
Assertion
Ref Expression
mamudir (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)))

Proof of Theorem mamudir
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamudir.p . . . . . 6 + = (+g𝑅)
3 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ringcmn 18801 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CMnd)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
93ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
10 mamudir.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
11 elmapi 8047 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1312ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
14 simplrl 819 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
15 simpr 479 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1613, 14, 15fovrnd 6972 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
17 mamudir.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
18 elmapi 8047 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2019ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
21 simplrr 820 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2220, 15, 21fovrnd 6972 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑌𝑘) ∈ 𝐵)
23 eqid 2760 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 23ringcl 18781 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
259, 16, 22, 24syl3anc 1477 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
26 mamudir.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
27 elmapi 8047 . . . . . . . . . 10 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2928ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3029, 15, 21fovrnd 6972 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
311, 23ringcl 18781 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
329, 16, 30, 31syl3anc 1477 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
33 eqid 2760 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))
34 eqid 2760 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))
351, 2, 6, 8, 25, 32, 33, 34gsummptfidmadd2 18546 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
36 ffn 6206 . . . . . . . . . . . . 13 (𝑌:(𝑁 × 𝑂)⟶𝐵𝑌 Fn (𝑁 × 𝑂))
3720, 36syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑁 × 𝑂))
38 ffn 6206 . . . . . . . . . . . . 13 (𝑍:(𝑁 × 𝑂)⟶𝐵𝑍 Fn (𝑁 × 𝑂))
3929, 38syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
40 mamudi.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
41 xpfi 8398 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
427, 40, 41syl2anc 696 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
4342ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
44 opelxpi 5305 . . . . . . . . . . . . . . 15 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4544ancoms 468 . . . . . . . . . . . . . 14 ((𝑘𝑂𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4645adantll 752 . . . . . . . . . . . . 13 (((𝑖𝑀𝑘𝑂) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4746adantll 752 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
48 fnfvof 7077 . . . . . . . . . . . 12 (((𝑌 Fn (𝑁 × 𝑂) ∧ 𝑍 Fn (𝑁 × 𝑂)) ∧ ((𝑁 × 𝑂) ∈ Fin ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))) → ((𝑌𝑓 + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
4937, 39, 43, 47, 48syl22anc 1478 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑌𝑓 + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
50 df-ov 6817 . . . . . . . . . . 11 (𝑗(𝑌𝑓 + 𝑍)𝑘) = ((𝑌𝑓 + 𝑍)‘⟨𝑗, 𝑘⟩)
51 df-ov 6817 . . . . . . . . . . . 12 (𝑗𝑌𝑘) = (𝑌‘⟨𝑗, 𝑘⟩)
52 df-ov 6817 . . . . . . . . . . . 12 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
5351, 52oveq12i 6826 . . . . . . . . . . 11 ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩))
5449, 50, 533eqtr4g 2819 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(𝑌𝑓 + 𝑍)𝑘) = ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)))
5554oveq2d 6830 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)) = ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))))
561, 2, 23ringdi 18786 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
579, 16, 22, 30, 56syl13anc 1479 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5855, 57eqtrd 2794 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5958mpteq2dva 4896 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
60 eqidd 2761 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))
61 eqidd 2761 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
628, 25, 32, 60, 61offval2 7080 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6359, 62eqtr4d 2797 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘))) = ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6463oveq2d 6830 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)))) = (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
65 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
663adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
67 mamudi.m . . . . . . . 8 (𝜑𝑀 ∈ Fin)
6867adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
6940adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
7010adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7117adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
72 simprl 811 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
73 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7465, 1, 23, 66, 68, 8, 69, 70, 71, 72, 73mamufv 20415 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑌)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))))
7526adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
7665, 1, 23, 66, 68, 8, 69, 70, 75, 72, 73mamufv 20415 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7774, 76oveq12d 6832 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
7835, 64, 773eqtr4d 2804 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)))) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
79 ringmnd 18776 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
803, 79syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
811, 2mndvcl 20419 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂))) → (𝑌𝑓 + 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8280, 17, 26, 81syl3anc 1477 . . . . . 6 (𝜑 → (𝑌𝑓 + 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8382adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝑓 + 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8465, 1, 23, 66, 68, 8, 69, 70, 83, 72, 73mamufv 20415 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)))))
851, 3, 65, 67, 7, 40, 10, 17mamucl 20429 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
86 elmapi 8047 . . . . . . . 8 ((𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵)
87 ffn 6206 . . . . . . . 8 ((𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8885, 86, 873syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8988adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
901, 3, 65, 67, 7, 40, 10, 26mamucl 20429 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
91 elmapi 8047 . . . . . . . 8 ((𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
92 ffn 6206 . . . . . . . 8 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9390, 91, 923syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9493adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
95 xpfi 8398 . . . . . . . 8 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
9667, 40, 95syl2anc 696 . . . . . . 7 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9796adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
98 opelxpi 5305 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
9998adantl 473 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
100 fnfvof 7077 . . . . . 6 ((((𝑋𝐹𝑌) Fn (𝑀 × 𝑂) ∧ (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
10189, 94, 97, 99, 100syl22anc 1478 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
102 df-ov 6817 . . . . 5 (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘) = (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
103 df-ov 6817 . . . . . 6 (𝑖(𝑋𝐹𝑌)𝑘) = ((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩)
104 df-ov 6817 . . . . . 6 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
105103, 104oveq12i 6826 . . . . 5 ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩))
106101, 102, 1053eqtr4g 2819 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
10778, 84, 1063eqtr4d 2804 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘))
108107ralrimivva 3109 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘))
1091, 3, 65, 67, 7, 40, 10, 82mamucl 20429 . . . 4 (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
110 elmapi 8047 . . . 4 ((𝑋𝐹(𝑌𝑓 + 𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹(𝑌𝑓 + 𝑍)):(𝑀 × 𝑂)⟶𝐵)
111 ffn 6206 . . . 4 ((𝑋𝐹(𝑌𝑓 + 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(𝑌𝑓 + 𝑍)) Fn (𝑀 × 𝑂))
112109, 110, 1113syl 18 . . 3 (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) Fn (𝑀 × 𝑂))
1131, 2mndvcl 20419 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂))) → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
11480, 85, 90, 113syl3anc 1477 . . . 4 (𝜑 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
115 elmapi 8047 . . . 4 (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
116 ffn 6206 . . . 4 (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
117114, 115, 1163syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
118 eqfnov2 6933 . . 3 (((𝑋𝐹(𝑌𝑓 + 𝑍)) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘)))
119112, 117, 118syl2anc 696 . 2 (𝜑 → ((𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘)))
120108, 119mpbird 247 1 (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  cop 4327  cotp 4329  cmpt 4881   × cxp 5264   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  𝑓 cof 7061  𝑚 cmap 8025  Fincfn 8123  Basecbs 16079  +gcplusg 16163  .rcmulr 16164   Σg cgsu 16323  Mndcmnd 17515  CMndccmn 18413  Ringcrg 18767   maMul cmmul 20411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-0g 16324  df-gsum 16325  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-mamu 20412
This theorem is referenced by:  matring  20471
  Copyright terms: Public domain W3C validator