Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuass Structured version   Visualization version   GIF version

Theorem mamuass 20402
 Description: Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamuass.m (𝜑𝑀 ∈ Fin)
mamuass.n (𝜑𝑁 ∈ Fin)
mamuass.o (𝜑𝑂 ∈ Fin)
mamuass.p (𝜑𝑃 ∈ Fin)
mamuass.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamuass.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
mamuass.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
mamuass.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuass.g 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
mamuass.h 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamuass.i 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
Assertion
Ref Expression
mamuass (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))

Proof of Theorem mamuass
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
3 ringcmn 18773 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
54adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ CMnd)
6 mamuass.o . . . . . . 7 (𝜑𝑂 ∈ Fin)
76adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑂 ∈ Fin)
8 mamuass.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 472 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑁 ∈ Fin)
102ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑅 ∈ Ring)
11 mamuass.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
12 elmapi 8037 . . . . . . . . . . 11 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1311, 12syl 17 . . . . . . . . . 10 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1413ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
15 simplrl 819 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑖𝑀)
16 simpr 479 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑙𝑁)
1714, 15, 16fovrnd 6963 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑖𝑋𝑙) ∈ 𝐵)
1817adantrl 754 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑖𝑋𝑙) ∈ 𝐵)
19 mamuass.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
20 elmapi 8037 . . . . . . . . . . 11 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
23 simprr 813 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑙𝑁)
24 simprl 811 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑗𝑂)
2522, 23, 24fovrnd 6963 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑙𝑌𝑗) ∈ 𝐵)
26 mamuass.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
27 elmapi 8037 . . . . . . . . . . . 12 (𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑂 × 𝑃)⟶𝐵)
2928ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
30 simpr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑗𝑂)
31 simplrr 820 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑘𝑃)
3229, 30, 31fovrnd 6963 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑗𝑍𝑘) ∈ 𝐵)
3332adantrr 755 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑗𝑍𝑘) ∈ 𝐵)
34 eqid 2752 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
351, 34ringcl 18753 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
3610, 25, 33, 35syl3anc 1473 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
371, 34ringcl 18753 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
3810, 18, 36, 37syl3anc 1473 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
391, 5, 7, 9, 38gsumcom3fi 20400 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
40 mamuass.f . . . . . . . . . 10 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
412ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑅 ∈ Ring)
42 mamuass.m . . . . . . . . . . 11 (𝜑𝑀 ∈ Fin)
4342ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑀 ∈ Fin)
448ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑁 ∈ Fin)
456ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑂 ∈ Fin)
4611ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
4719ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
48 simplrl 819 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑖𝑀)
4940, 1, 34, 41, 43, 44, 45, 46, 47, 48, 30mamufv 20387 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑖(𝑋𝐹𝑌)𝑗) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))))
5049oveq1d 6820 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
51 eqid 2752 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
52 eqid 2752 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
531, 34ringcl 18753 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5410, 18, 25, 53syl3anc 1473 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5554anassrs 683 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
56 eqid 2752 . . . . . . . . . 10 (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))
57 ovexd 6835 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ V)
58 fvexd 6356 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (0g𝑅) ∈ V)
5956, 44, 57, 58fsuppmptdm 8443 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) finSupp (0g𝑅))
601, 51, 52, 34, 41, 44, 32, 55, 59gsummulc1 18798 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
611, 34ringass 18756 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6210, 18, 25, 33, 61syl13anc 1475 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6362anassrs 683 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6463mpteq2dva 4888 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6564oveq2d 6821 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6650, 60, 653eqtr2d 2792 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6766mpteq2dva 4888 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
6867oveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
69 mamuass.i . . . . . . . . . 10 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
702ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
718ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑁 ∈ Fin)
726ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑂 ∈ Fin)
73 mamuass.p . . . . . . . . . . 11 (𝜑𝑃 ∈ Fin)
7473ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑃 ∈ Fin)
7519ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
7626ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
77 simplrr 820 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑘𝑃)
7869, 1, 34, 70, 71, 72, 74, 75, 76, 16, 77mamufv 20387 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑙(𝑌𝐼𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7978oveq2d 6821 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8036anass1rs 884 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
81 eqid 2752 . . . . . . . . . 10 (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))
82 ovexd 6835 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ V)
83 fvexd 6356 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (0g𝑅) ∈ V)
8481, 72, 82, 83fsuppmptdm 8443 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) finSupp (0g𝑅))
851, 51, 52, 34, 70, 72, 17, 80, 84gsummulc2 18799 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8679, 85eqtr4d 2789 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8786mpteq2dva 4888 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘))) = (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
8887oveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
8939, 68, 883eqtr4d 2796 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
90 mamuass.g . . . . 5 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
912adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ Ring)
9242adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑀 ∈ Fin)
9373adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑃 ∈ Fin)
941, 2, 40, 42, 8, 6, 11, 19mamucl 20401 . . . . . 6 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
9594adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
9626adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
97 simprl 811 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑖𝑀)
98 simprr 813 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑘𝑃)
9990, 1, 34, 91, 92, 7, 93, 95, 96, 97, 98mamufv 20387 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
100 mamuass.h . . . . 5 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
10111adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
1021, 2, 69, 8, 6, 73, 19, 26mamucl 20401 . . . . . 6 (𝜑 → (𝑌𝐼𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑃)))
103102adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑌𝐼𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑃)))
104100, 1, 34, 91, 92, 9, 93, 101, 103, 97, 98mamufv 20387 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
10589, 99, 1043eqtr4d 2796 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
106105ralrimivva 3101 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
1071, 2, 90, 42, 6, 73, 94, 26mamucl 20401 . . . 4 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
108 elmapi 8037 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑃)) → ((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵)
109 ffn 6198 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
110107, 108, 1093syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
1111, 2, 100, 42, 8, 73, 11, 102mamucl 20401 . . . 4 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
112 elmapi 8037 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑃)) → (𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵)
113 ffn 6198 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
114111, 112, 1133syl 18 . . 3 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
115 eqfnov2 6924 . . 3 ((((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃) ∧ (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
116110, 114, 115syl2anc 696 . 2 (𝜑 → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
117106, 116mpbird 247 1 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131  ∀wral 3042  Vcvv 3332  ⟨cotp 4321   ↦ cmpt 4873   × cxp 5256   Fn wfn 6036  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805   ↑𝑚 cmap 8015  Fincfn 8113  Basecbs 16051  +gcplusg 16135  .rcmulr 16136  0gc0g 16294   Σg cgsu 16295  CMndccmn 18385  Ringcrg 18739   maMul cmmul 20383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-ot 4322  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-0g 16296  df-gsum 16297  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-mulg 17734  df-ghm 17851  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-mamu 20384 This theorem is referenced by:  matring  20443
 Copyright terms: Public domain W3C validator