MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madugsum Structured version   Visualization version   GIF version

Theorem madugsum 20497
Description: The determinant of a matrix with a row 𝐿 consisting of the same element 𝑋 is the sum of the elements of the 𝐿-th column of the adjunct of the matrix multiplied with 𝑋. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
madugsum.d 𝐷 = (𝑁 maDet 𝑅)
madugsum.t · = (.r𝑅)
madugsum.k 𝐾 = (Base‘𝑅)
madugsum.m (𝜑𝑀𝐵)
madugsum.r (𝜑𝑅 ∈ CRing)
madugsum.x ((𝜑𝑖𝑁) → 𝑋𝐾)
madugsum.l (𝜑𝐿𝑁)
Assertion
Ref Expression
madugsum (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐵,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐽   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑗,𝑋   · ,𝑖   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑗)   𝐽(𝑗)   𝑋(𝑖)

Proof of Theorem madugsum
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 4770 . . . . 5 (𝑐 = ∅ → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
21oveq2d 6706 . . . 4 (𝑐 = ∅ → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
3 eleq2 2719 . . . . . . . 8 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
43ifbid 4141 . . . . . . 7 (𝑐 = ∅ → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)))
54ifeq1d 4137 . . . . . 6 (𝑐 = ∅ → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
65mpt2eq3dv 6763 . . . . 5 (𝑐 = ∅ → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
76fveq2d 6233 . . . 4 (𝑐 = ∅ → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
82, 7eqeq12d 2666 . . 3 (𝑐 = ∅ → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
9 mpteq1 4770 . . . . 5 (𝑐 = 𝑑 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
109oveq2d 6706 . . . 4 (𝑐 = 𝑑 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
11 eleq2 2719 . . . . . . . 8 (𝑐 = 𝑑 → (𝑏𝑐𝑏𝑑))
1211ifbid 4141 . . . . . . 7 (𝑐 = 𝑑 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)))
1312ifeq1d 4137 . . . . . 6 (𝑐 = 𝑑 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
1413mpt2eq3dv 6763 . . . . 5 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
1514fveq2d 6233 . . . 4 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
1610, 15eqeq12d 2666 . . 3 (𝑐 = 𝑑 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
17 mpteq1 4770 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
1817oveq2d 6706 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
19 eleq2 2719 . . . . . . . 8 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐𝑏 ∈ (𝑑 ∪ {𝑒})))
2019ifbid 4141 . . . . . . 7 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)))
2120ifeq1d 4137 . . . . . 6 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
2221mpt2eq3dv 6763 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
2322fveq2d 6233 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
2418, 23eqeq12d 2666 . . 3 (𝑐 = (𝑑 ∪ {𝑒}) → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
25 mpteq1 4770 . . . . 5 (𝑐 = 𝑁 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
2625oveq2d 6706 . . . 4 (𝑐 = 𝑁 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
27 eleq2 2719 . . . . . . . 8 (𝑐 = 𝑁 → (𝑏𝑐𝑏𝑁))
2827ifbid 4141 . . . . . . 7 (𝑐 = 𝑁 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
2928ifeq1d 4137 . . . . . 6 (𝑐 = 𝑁 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
3029mpt2eq3dv 6763 . . . . 5 (𝑐 = 𝑁 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
3130fveq2d 6233 . . . 4 (𝑐 = 𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
3226, 31eqeq12d 2666 . . 3 (𝑐 = 𝑁 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
33 noel 3952 . . . . . . . . 9 ¬ 𝑏 ∈ ∅
34 iffalse 4128 . . . . . . . . 9 𝑏 ∈ ∅ → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
3533, 34mp1i 13 . . . . . . . 8 ((𝑎𝑁𝑏𝑁) → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
3635ifeq1d 4137 . . . . . . 7 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
3736mpt2eq3ia 6762 . . . . . 6 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
3837fveq2i 6232 . . . . 5 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏))))
39 madugsum.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
40 madugsum.k . . . . . 6 𝐾 = (Base‘𝑅)
41 eqid 2651 . . . . . 6 (0g𝑅) = (0g𝑅)
42 madugsum.r . . . . . 6 (𝜑𝑅 ∈ CRing)
43 madugsum.m . . . . . . . 8 (𝜑𝑀𝐵)
44 maduf.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
45 maduf.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
4644, 45matrcl 20266 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4743, 46syl 17 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4847simpld 474 . . . . . 6 (𝜑𝑁 ∈ Fin)
4944, 40, 45matbas2i 20276 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁)))
50 elmapi 7921 . . . . . . . . 9 (𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
5143, 49, 503syl 18 . . . . . . . 8 (𝜑𝑀:(𝑁 × 𝑁)⟶𝐾)
5251fovrnda 6847 . . . . . . 7 ((𝜑 ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
53523impb 1279 . . . . . 6 ((𝜑𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
54 madugsum.l . . . . . 6 (𝜑𝐿𝑁)
5539, 40, 41, 42, 48, 53, 54mdetr0 20459 . . . . 5 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))) = (0g𝑅))
5638, 55syl5eq 2697 . . . 4 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (0g𝑅))
57 mpt0 6059 . . . . . 6 (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = ∅
5857oveq2i 6701 . . . . 5 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg ∅)
5941gsum0 17325 . . . . 5 (𝑅 Σg ∅) = (0g𝑅)
6058, 59eqtri 2673 . . . 4 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (0g𝑅)
6156, 60syl6reqr 2704 . . 3 (𝜑 → (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
62 eqid 2651 . . . . . . 7 (+g𝑅) = (+g𝑅)
6342adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CRing)
64 crngring 18604 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
6563, 64syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Ring)
66 ringcmn 18627 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6765, 66syl 17 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CMnd)
6848adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑁 ∈ Fin)
69 simprl 809 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑𝑁)
70 ssfi 8221 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑑𝑁) → 𝑑 ∈ Fin)
7168, 69, 70syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑 ∈ Fin)
7265adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑅 ∈ Ring)
7369sselda 3636 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏𝑁)
74 madugsum.x . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑋𝐾)
7574ralrimiva 2995 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑁 𝑋𝐾)
7675ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → ∀𝑖𝑁 𝑋𝐾)
77 rspcsbela 4039 . . . . . . . . 9 ((𝑏𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑏 / 𝑖𝑋𝐾)
7873, 76, 77syl2anc 694 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏 / 𝑖𝑋𝐾)
79 maduf.j . . . . . . . . . . . . . 14 𝐽 = (𝑁 maAdju 𝑅)
8044, 79, 45maduf 20495 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
8142, 80syl 17 . . . . . . . . . . . 12 (𝜑𝐽:𝐵𝐵)
8281, 43ffvelrnd 6400 . . . . . . . . . . 11 (𝜑 → (𝐽𝑀) ∈ 𝐵)
8344, 40, 45matbas2i 20276 . . . . . . . . . . 11 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ (𝐾𝑚 (𝑁 × 𝑁)))
84 elmapi 7921 . . . . . . . . . . 11 ((𝐽𝑀) ∈ (𝐾𝑚 (𝑁 × 𝑁)) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8582, 83, 843syl 18 . . . . . . . . . 10 (𝜑 → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8685ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8754ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝐿𝑁)
8886, 73, 87fovrnd 6848 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏(𝐽𝑀)𝐿) ∈ 𝐾)
89 madugsum.t . . . . . . . . 9 · = (.r𝑅)
9040, 89ringcl 18607 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑏 / 𝑖𝑋𝐾 ∧ (𝑏(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
9172, 78, 88, 90syl3anc 1366 . . . . . . 7 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
92 vex 3234 . . . . . . . 8 𝑒 ∈ V
9392a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 ∈ V)
94 eldifn 3766 . . . . . . . 8 (𝑒 ∈ (𝑁𝑑) → ¬ 𝑒𝑑)
9594ad2antll 765 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ 𝑒𝑑)
96 eldifi 3765 . . . . . . . . . 10 (𝑒 ∈ (𝑁𝑑) → 𝑒𝑁)
9796ad2antll 765 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒𝑁)
9875adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ∀𝑖𝑁 𝑋𝐾)
99 rspcsbela 4039 . . . . . . . . 9 ((𝑒𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑒 / 𝑖𝑋𝐾)
10097, 98, 99syl2anc 694 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 / 𝑖𝑋𝐾)
10185adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
10254adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝐿𝑁)
103101, 97, 102fovrnd 6848 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) ∈ 𝐾)
10440, 89ringcl 18607 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ (𝑒(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
10565, 100, 103, 104syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
106 csbeq1 3569 . . . . . . . 8 (𝑏 = 𝑒𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
107 oveq1 6697 . . . . . . . 8 (𝑏 = 𝑒 → (𝑏(𝐽𝑀)𝐿) = (𝑒(𝐽𝑀)𝐿))
108106, 107oveq12d 6708 . . . . . . 7 (𝑏 = 𝑒 → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
10940, 62, 67, 71, 91, 93, 95, 105, 108gsumunsn 18405 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
110109adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
111 oveq1 6697 . . . . . 6 ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
112111adantl 481 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
113 elun 3786 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 ∈ {𝑒}))
114 velsn 4226 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑒} ↔ 𝑏 = 𝑒)
115114orbi2i 540 . . . . . . . . . . . . . 14 ((𝑏𝑑𝑏 ∈ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
116113, 115bitri 264 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
117 ifbi 4140 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒)) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)))
118116, 117ax-mp 5 . . . . . . . . . . . 12 if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅))
119 ringmnd 18602 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
12065, 119syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Mnd)
1211203ad2ant1 1102 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Mnd)
122 simp3 1083 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
123983ad2ant1 1102 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ∀𝑖𝑁 𝑋𝐾)
124122, 123, 77syl2anc 694 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋𝐾)
125 elequ1 2037 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝑏𝑑𝑒𝑑))
126125biimpac 502 . . . . . . . . . . . . . . 15 ((𝑏𝑑𝑏 = 𝑒) → 𝑒𝑑)
12795, 126nsyl 135 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ (𝑏𝑑𝑏 = 𝑒))
1281273ad2ant1 1102 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ¬ (𝑏𝑑𝑏 = 𝑒))
12940, 41, 62mndifsplit 20490 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ 𝑏 / 𝑖𝑋𝐾 ∧ ¬ (𝑏𝑑𝑏 = 𝑒)) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
130121, 124, 128, 129syl3anc 1366 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
131118, 130syl5eq 2697 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
132106adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏 = 𝑒) → 𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
133132ifeq1da 4149 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
134 ovif2 6780 . . . . . . . . . . . . . . 15 (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅)))
135 eqid 2651 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
13640, 89, 135ringridm 18618 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13765, 100, 136syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13840, 89, 41ringrz 18634 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
13965, 100, 138syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
140137, 139ifeq12d 4139 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
141134, 140syl5eq 2697 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
142133, 141eqtr4d 2688 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))))
143142oveq2d 6706 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
1441433ad2ant1 1102 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
145131, 144eqtrd 2685 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
146145ifeq1d 4137 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))
147146mpt2eq3dva 6761 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏))))
148147fveq2d 6233 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))))
14940, 41ring0cl 18615 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐾)
15065, 149syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (0g𝑅) ∈ 𝐾)
1511503ad2ant1 1102 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (0g𝑅) ∈ 𝐾)
152124, 151ifcld 4164 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)) ∈ 𝐾)
15340, 135ringidcl 18614 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
15465, 153syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (1r𝑅) ∈ 𝐾)
155154, 150ifcld 4164 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
15640, 89ringcl 18607 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15765, 100, 155, 156syl3anc 1366 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
1581573ad2ant1 1102 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15951adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
160159fovrnda 6847 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
1611603impb 1279 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
16239, 40, 62, 63, 68, 152, 158, 161, 102mdetrlin2 20461 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))))
1631553ad2ant1 1102 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
16439, 40, 89, 63, 68, 163, 161, 100, 102mdetrsca2 20458 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
16543adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀𝐵)
16644, 39, 79, 45, 135, 41maducoeval 20493 . . . . . . . . . . 11 ((𝑀𝐵𝑒𝑁𝐿𝑁) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
167165, 97, 102, 166syl3anc 1366 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
168167oveq2d 6706 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
169164, 168eqtr4d 2688 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
170169oveq2d 6706 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
171148, 162, 1703eqtrrd 2690 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
172171adantr 480 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
173110, 112, 1723eqtrd 2689 . . . 4 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
174173ex 449 . . 3 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
1758, 16, 24, 32, 61, 174, 48findcard2d 8243 . 2 (𝜑 → (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
176 nfcv 2793 . . . 4 𝑏(𝑋 · (𝑖(𝐽𝑀)𝐿))
177 nfcsb1v 3582 . . . . 5 𝑖𝑏 / 𝑖𝑋
178 nfcv 2793 . . . . 5 𝑖 ·
179 nfcv 2793 . . . . 5 𝑖(𝑏(𝐽𝑀)𝐿)
180177, 178, 179nfov 6716 . . . 4 𝑖(𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))
181 csbeq1a 3575 . . . . 5 (𝑖 = 𝑏𝑋 = 𝑏 / 𝑖𝑋)
182 oveq1 6697 . . . . 5 (𝑖 = 𝑏 → (𝑖(𝐽𝑀)𝐿) = (𝑏(𝐽𝑀)𝐿))
183181, 182oveq12d 6708 . . . 4 (𝑖 = 𝑏 → (𝑋 · (𝑖(𝐽𝑀)𝐿)) = (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
184176, 180, 183cbvmpt 4782 . . 3 (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
185184oveq2i 6701 . 2 (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
186 nfcv 2793 . . . . 5 𝑎if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
187 nfcv 2793 . . . . 5 𝑏if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
188 nfcv 2793 . . . . 5 𝑗if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
189 nfv 1883 . . . . . 6 𝑖 𝑎 = 𝐿
190 nfcv 2793 . . . . . 6 𝑖(𝑎𝑀𝑏)
191189, 177, 190nfif 4148 . . . . 5 𝑖if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
192 eqeq1 2655 . . . . . . 7 (𝑗 = 𝑎 → (𝑗 = 𝐿𝑎 = 𝐿))
193192adantr 480 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗 = 𝐿𝑎 = 𝐿))
194181adantl 481 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → 𝑋 = 𝑏 / 𝑖𝑋)
195 oveq12 6699 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗𝑀𝑖) = (𝑎𝑀𝑏))
196193, 194, 195ifbieq12d 4146 . . . . 5 ((𝑗 = 𝑎𝑖 = 𝑏) → if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)) = if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
197186, 187, 188, 191, 196cbvmpt2 6776 . . . 4 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
198 iftrue 4125 . . . . . . . 8 (𝑏𝑁 → if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)) = 𝑏 / 𝑖𝑋)
199198eqcomd 2657 . . . . . . 7 (𝑏𝑁𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
200199adantl 481 . . . . . 6 ((𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
201200ifeq1d 4137 . . . . 5 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
202201mpt2eq3ia 6762 . . . 4 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
203197, 202eqtri 2673 . . 3 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
204203fveq2i 6232 . 2 (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
205175, 185, 2043eqtr4g 2710 1 (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  csb 3566  cdif 3604  cun 3605  wss 3607  c0 3948  ifcif 4119  {csn 4210  cmpt 4762   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  CMndccmn 18239  1rcur 18547  Ringcrg 18593  CRingccrg 18594   Mat cmat 20261   maDet cmdat 20438   maAdju cmadu 20486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-splice 13336  df-reverse 13337  df-s2 13639  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-gim 17748  df-cntz 17796  df-oppg 17822  df-symg 17844  df-pmtr 17908  df-psgn 17957  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-subrg 18826  df-sra 19220  df-rgmod 19221  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-dsmm 20124  df-frlm 20139  df-mat 20262  df-mdet 20439  df-madu 20488
This theorem is referenced by:  madurid  20498  mdetlap1  30020
  Copyright terms: Public domain W3C validator