Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem4 Structured version   Visualization version   GIF version

Theorem madjusmdetlem4 30205
 Description: Lemma for madjusmdet 30206. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
madjusmdetlem4.q 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
madjusmdetlem4.t 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
Assertion
Ref Expression
madjusmdetlem4 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem4
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madjusmdet.b . . 3 𝐵 = (Base‘𝐴)
2 madjusmdet.a . . 3 𝐴 = ((1...𝑁) Mat 𝑅)
3 madjusmdet.d . . 3 𝐷 = ((1...𝑁) maDet 𝑅)
4 madjusmdet.k . . 3 𝐾 = ((1...𝑁) maAdju 𝑅)
5 madjusmdet.t . . 3 · = (.r𝑅)
6 madjusmdet.z . . 3 𝑍 = (ℤRHom‘𝑅)
7 madjusmdet.e . . 3 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
8 madjusmdet.n . . 3 (𝜑𝑁 ∈ ℕ)
9 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
10 madjusmdet.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
11 madjusmdet.j . . 3 (𝜑𝐽 ∈ (1...𝑁))
12 madjusmdet.m . . 3 (𝜑𝑀𝐵)
13 eqid 2760 . . 3 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
14 eqid 2760 . . 3 (pmSgn‘(1...𝑁)) = (pmSgn‘(1...𝑁))
15 eqid 2760 . . 3 (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
16 fveq2 6352 . . . . 5 (𝑘 = 𝑖 → ((𝑃𝑆)‘𝑘) = ((𝑃𝑆)‘𝑖))
1716oveq1d 6828 . . . 4 (𝑘 = 𝑖 → (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)) = (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)))
18 fveq2 6352 . . . . 5 (𝑙 = 𝑗 → ((𝑄𝑇)‘𝑙) = ((𝑄𝑇)‘𝑗))
1918oveq2d 6829 . . . 4 (𝑙 = 𝑗 → (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)) = (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑗)))
2017, 19cbvmpt2v 6900 . . 3 (𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑗)))
21 eqid 2760 . . . . . 6 (1...𝑁) = (1...𝑁)
22 madjusmdetlem2.p . . . . . 6 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
23 eqid 2760 . . . . . 6 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
2421, 22, 23, 13fzto1st 30162 . . . . 5 (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
2510, 24syl 17 . . . 4 (𝜑𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
26 nnuz 11916 . . . . . . . . 9 ℕ = (ℤ‘1)
278, 26syl6eleq 2849 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
28 eluzfz2 12542 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2927, 28syl 17 . . . . . . 7 (𝜑𝑁 ∈ (1...𝑁))
30 madjusmdetlem2.s . . . . . . . 8 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
3121, 30, 23, 13fzto1st 30162 . . . . . . 7 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
3229, 31syl 17 . . . . . 6 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
33 eqid 2760 . . . . . . 7 (invg‘(SymGrp‘(1...𝑁))) = (invg‘(SymGrp‘(1...𝑁)))
3423, 13, 33symginv 18022 . . . . . 6 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
3532, 34syl 17 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
36 fzfid 12966 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
3723symggrp 18020 . . . . . . 7 ((1...𝑁) ∈ Fin → (SymGrp‘(1...𝑁)) ∈ Grp)
3836, 37syl 17 . . . . . 6 (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp)
3913, 33grpinvcl 17668 . . . . . 6 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4038, 32, 39syl2anc 696 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4135, 40eqeltrrd 2840 . . . 4 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
42 eqid 2760 . . . . . 6 (+g‘(SymGrp‘(1...𝑁))) = (+g‘(SymGrp‘(1...𝑁)))
4323, 13, 42symgov 18010 . . . . 5 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) = (𝑃𝑆))
4423, 13, 42symgcl 18011 . . . . 5 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4543, 44eqeltrrd 2840 . . . 4 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4625, 41, 45syl2anc 696 . . 3 (𝜑 → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
47 madjusmdetlem4.q . . . . . 6 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
4821, 47, 23, 13fzto1st 30162 . . . . 5 (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
4911, 48syl 17 . . . 4 (𝜑𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
50 madjusmdetlem4.t . . . . . . . 8 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
5121, 50, 23, 13fzto1st 30162 . . . . . . 7 (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5229, 51syl 17 . . . . . 6 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5323, 13, 33symginv 18022 . . . . . 6 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
5452, 53syl 17 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
5513, 33grpinvcl 17668 . . . . . 6 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
5638, 52, 55syl2anc 696 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
5754, 56eqeltrrd 2840 . . . 4 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5823, 13, 42symgov 18010 . . . . 5 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) = (𝑄𝑇))
5923, 13, 42symgcl 18011 . . . . 5 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6058, 59eqeltrrd 2840 . . . 4 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6149, 57, 60syl2anc 696 . . 3 (𝜑 → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6223, 13symgbasf1o 18003 . . . . . . 7 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
6332, 62syl 17 . . . . . 6 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
64 f1of1 6297 . . . . . 6 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1→(1...𝑁))
65 df-f1 6054 . . . . . . 7 (𝑆:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑆:(1...𝑁)⟶(1...𝑁) ∧ Fun 𝑆))
6665simprbi 483 . . . . . 6 (𝑆:(1...𝑁)–1-1→(1...𝑁) → Fun 𝑆)
6763, 64, 663syl 18 . . . . 5 (𝜑 → Fun 𝑆)
68 f1ocnv 6310 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
69 f1odm 6302 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑆 = (1...𝑁))
7063, 68, 693syl 18 . . . . . 6 (𝜑 → dom 𝑆 = (1...𝑁))
7129, 70eleqtrrd 2842 . . . . 5 (𝜑𝑁 ∈ dom 𝑆)
72 fvco 6436 . . . . 5 ((Fun 𝑆𝑁 ∈ dom 𝑆) → ((𝑃𝑆)‘𝑁) = (𝑃‘(𝑆𝑁)))
7367, 71, 72syl2anc 696 . . . 4 (𝜑 → ((𝑃𝑆)‘𝑁) = (𝑃‘(𝑆𝑁)))
7421, 30, 23, 13fzto1stinvn 30163 . . . . . 6 (𝑁 ∈ (1...𝑁) → (𝑆𝑁) = 1)
7529, 74syl 17 . . . . 5 (𝜑 → (𝑆𝑁) = 1)
7675fveq2d 6356 . . . 4 (𝜑 → (𝑃‘(𝑆𝑁)) = (𝑃‘1))
7721, 22fzto1stfv1 30160 . . . . 5 (𝐼 ∈ (1...𝑁) → (𝑃‘1) = 𝐼)
7810, 77syl 17 . . . 4 (𝜑 → (𝑃‘1) = 𝐼)
7973, 76, 783eqtrd 2798 . . 3 (𝜑 → ((𝑃𝑆)‘𝑁) = 𝐼)
8023, 13symgbasf1o 18003 . . . . . . 7 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
8152, 80syl 17 . . . . . 6 (𝜑𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
82 f1of1 6297 . . . . . 6 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑇:(1...𝑁)–1-1→(1...𝑁))
83 df-f1 6054 . . . . . . 7 (𝑇:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑇:(1...𝑁)⟶(1...𝑁) ∧ Fun 𝑇))
8483simprbi 483 . . . . . 6 (𝑇:(1...𝑁)–1-1→(1...𝑁) → Fun 𝑇)
8581, 82, 843syl 18 . . . . 5 (𝜑 → Fun 𝑇)
86 f1ocnv 6310 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
87 f1odm 6302 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑇 = (1...𝑁))
8881, 86, 873syl 18 . . . . . 6 (𝜑 → dom 𝑇 = (1...𝑁))
8929, 88eleqtrrd 2842 . . . . 5 (𝜑𝑁 ∈ dom 𝑇)
90 fvco 6436 . . . . 5 ((Fun 𝑇𝑁 ∈ dom 𝑇) → ((𝑄𝑇)‘𝑁) = (𝑄‘(𝑇𝑁)))
9185, 89, 90syl2anc 696 . . . 4 (𝜑 → ((𝑄𝑇)‘𝑁) = (𝑄‘(𝑇𝑁)))
9221, 50, 23, 13fzto1stinvn 30163 . . . . . 6 (𝑁 ∈ (1...𝑁) → (𝑇𝑁) = 1)
9329, 92syl 17 . . . . 5 (𝜑 → (𝑇𝑁) = 1)
9493fveq2d 6356 . . . 4 (𝜑 → (𝑄‘(𝑇𝑁)) = (𝑄‘1))
9521, 47fzto1stfv1 30160 . . . . 5 (𝐽 ∈ (1...𝑁) → (𝑄‘1) = 𝐽)
9611, 95syl 17 . . . 4 (𝜑 → (𝑄‘1) = 𝐽)
9791, 94, 963eqtrd 2798 . . 3 (𝜑 → ((𝑄𝑇)‘𝑁) = 𝐽)
98 crngring 18758 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
999, 98syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
1002, 1minmar1cl 20659 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
10199, 12, 10, 11, 100syl22anc 1478 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
1021, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 22, 30, 47, 50, 20, 101madjusmdetlem3 30204 . . 3 (𝜑 → (𝐼(subMat1‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))𝐽) = (𝑁(subMat1‘(𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙))))𝑁))
1031, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 46, 61, 79, 97, 102madjusmdetlem1 30202 . 2 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
10423, 14, 13psgnco 20131 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)))
10536, 25, 41, 104syl3anc 1477 . . . . . . 7 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)))
10621, 22, 23, 13, 14psgnfzto1st 30164 . . . . . . . . 9 (𝐼 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1)))
10710, 106syl 17 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1)))
10823, 14, 13psgninv 20130 . . . . . . . . . 10 (((1...𝑁) ∈ Fin ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘𝑆) = ((pmSgn‘(1...𝑁))‘𝑆))
10936, 32, 108syl2anc 696 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = ((pmSgn‘(1...𝑁))‘𝑆))
11021, 30, 23, 13, 14psgnfzto1st 30164 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
11129, 110syl 17 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
112109, 111eqtrd 2794 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
113107, 112oveq12d 6831 . . . . . . 7 (𝜑 → (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))))
114105, 113eqtrd 2794 . . . . . 6 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))))
11523, 14, 13psgnco 20131 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)))
11636, 49, 57, 115syl3anc 1477 . . . . . . 7 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)))
11721, 47, 23, 13, 14psgnfzto1st 30164 . . . . . . . . 9 (𝐽 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1)))
11811, 117syl 17 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1)))
11923, 14, 13psgninv 20130 . . . . . . . . . 10 (((1...𝑁) ∈ Fin ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘𝑇) = ((pmSgn‘(1...𝑁))‘𝑇))
12036, 52, 119syl2anc 696 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = ((pmSgn‘(1...𝑁))‘𝑇))
12121, 50, 23, 13, 14psgnfzto1st 30164 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
12229, 121syl 17 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
123120, 122eqtrd 2794 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
124118, 123oveq12d 6831 . . . . . . 7 (𝜑 → (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1))))
125116, 124eqtrd 2794 . . . . . 6 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1))))
126114, 125oveq12d 6831 . . . . 5 (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇))) = (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))))
127 1cnd 10248 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
128127negcld 10571 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
129 fz1ssnn 12565 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ
130129, 10sseldi 3742 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
131130nnnn0d 11543 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ0)
132 1nn0 11500 . . . . . . . . . 10 1 ∈ ℕ0
133132a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
134131, 133nn0addcld 11547 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ ℕ0)
135128, 134expcld 13202 . . . . . . 7 (𝜑 → (-1↑(𝐼 + 1)) ∈ ℂ)
1368nnnn0d 11543 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
137136, 133nn0addcld 11547 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
138128, 137expcld 13202 . . . . . . 7 (𝜑 → (-1↑(𝑁 + 1)) ∈ ℂ)
139129, 11sseldi 3742 . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ)
140139nnnn0d 11543 . . . . . . . . 9 (𝜑𝐽 ∈ ℕ0)
141140, 133nn0addcld 11547 . . . . . . . 8 (𝜑 → (𝐽 + 1) ∈ ℕ0)
142128, 141expcld 13202 . . . . . . 7 (𝜑 → (-1↑(𝐽 + 1)) ∈ ℂ)
143135, 138, 142, 138mul4d 10440 . . . . . 6 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) = (((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) · ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1)))))
144128, 141, 134expaddd 13204 . . . . . . . 8 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))))
145130nncnd 11228 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℂ)
146139nncnd 11228 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℂ)
147145, 127, 146, 127add4d 10456 . . . . . . . . . . 11 (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + (1 + 1)))
148 1p1e2 11326 . . . . . . . . . . . 12 (1 + 1) = 2
149148oveq2i 6824 . . . . . . . . . . 11 ((𝐼 + 𝐽) + (1 + 1)) = ((𝐼 + 𝐽) + 2)
150147, 149syl6eq 2810 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + 2))
151150oveq2d 6829 . . . . . . . . 9 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑((𝐼 + 𝐽) + 2)))
152 2nn0 11501 . . . . . . . . . . . 12 2 ∈ ℕ0
153152a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ0)
154131, 140nn0addcld 11547 . . . . . . . . . . 11 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
155128, 153, 154expaddd 13204 . . . . . . . . . 10 (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · (-1↑2)))
156 neg1sqe1 13153 . . . . . . . . . . 11 (-1↑2) = 1
157156oveq2i 6824 . . . . . . . . . 10 ((-1↑(𝐼 + 𝐽)) · (-1↑2)) = ((-1↑(𝐼 + 𝐽)) · 1)
158155, 157syl6eq 2810 . . . . . . . . 9 (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · 1))
159128, 154expcld 13202 . . . . . . . . . 10 (𝜑 → (-1↑(𝐼 + 𝐽)) ∈ ℂ)
160159mulid1d 10249 . . . . . . . . 9 (𝜑 → ((-1↑(𝐼 + 𝐽)) · 1) = (-1↑(𝐼 + 𝐽)))
161151, 158, 1603eqtrd 2798 . . . . . . . 8 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑(𝐼 + 𝐽)))
162144, 161eqtr3d 2796 . . . . . . 7 (𝜑 → ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) = (-1↑(𝐼 + 𝐽)))
163137nn0zd 11672 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
164 m1expcl2 13076 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (-1↑(𝑁 + 1)) ∈ {-1, 1})
165 1neg1t1neg1 29823 . . . . . . . 8 ((-1↑(𝑁 + 1)) ∈ {-1, 1} → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1)
166163, 164, 1653syl 18 . . . . . . 7 (𝜑 → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1)
167162, 166oveq12d 6831 . . . . . 6 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) · ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1)))) = ((-1↑(𝐼 + 𝐽)) · 1))
168143, 167, 1603eqtrd 2798 . . . . 5 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) = (-1↑(𝐼 + 𝐽)))
169126, 168eqtrd 2794 . . . 4 (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇))) = (-1↑(𝐼 + 𝐽)))
170169fveq2d 6356 . . 3 (𝜑 → (𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) = (𝑍‘(-1↑(𝐼 + 𝐽))))
171170oveq1d 6828 . 2 (𝜑 → ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
172103, 171eqtrd 2794 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ifcif 4230  {cpr 4323   class class class wbr 4804   ↦ cmpt 4881  ◡ccnv 5265  dom cdm 5266   ∘ ccom 5270  Fun wfun 6043  ⟶wf 6045  –1-1→wf1 6046  –1-1-onto→wf1o 6048  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  Fincfn 8121  1c1 10129   + caddc 10131   · cmul 10133   ≤ cle 10267   − cmin 10458  -cneg 10459  ℕcn 11212  2c2 11262  ℕ0cn0 11484  ℤcz 11569  ℤ≥cuz 11879  ...cfz 12519  ↑cexp 13054  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  Grpcgrp 17623  invgcminusg 17624  SymGrpcsymg 17997  pmSgncpsgn 18109  Ringcrg 18747  CRingccrg 18748  ℤRHomczrh 20050   Mat cmat 20415   maDet cmdat 20592   maAdju cmadu 20640   minMatR1 cminmar1 20641  subMat1csmat 30168 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-splice 13490  df-reverse 13491  df-s2 13793  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-0g 16304  df-gsum 16305  df-prds 16310  df-pws 16312  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-ghm 17859  df-gim 17902  df-cntz 17950  df-oppg 17976  df-symg 17998  df-pmtr 18062  df-psgn 18111  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-sra 19374  df-rgmod 19375  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-dsmm 20278  df-frlm 20293  df-mat 20416  df-marrep 20566  df-subma 20585  df-mdet 20593  df-madu 20642  df-minmar1 20643  df-smat 30169 This theorem is referenced by:  madjusmdet  30206
 Copyright terms: Public domain W3C validator