Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem3 Structured version   Visualization version   GIF version

Theorem madjusmdetlem3 30023
Description: Lemma for madjusmdet 30025. (Contributed by Thierry Arnoux, 27-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
madjusmdetlem4.q 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
madjusmdetlem4.t 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
madjusmdetlem3.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
madjusmdetlem3.u (𝜑𝑈𝐵)
Assertion
Ref Expression
madjusmdetlem3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗   𝑈,𝑖,𝑗   𝑖,𝑊,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem3
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2 nnuz 11761 . . . . . . . . . . 11 ℕ = (ℤ‘1)
31, 2syl6eleq 2740 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
4 fzdif2 29679 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
53, 4syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 difss 3770 . . . . . . . . 9 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
75, 6syl6eqssr 3689 . . . . . . . 8 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
9 simprl 809 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
108, 9sseldd 3637 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
11 simprr 811 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
128, 11sseldd 3637 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
13 ovexd 6720 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V)
14 madjusmdetlem3.w . . . . . . 7 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1514ovmpt4g 6825 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1610, 12, 13, 15syl3anc 1366 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
179, 11ovresd 6843 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗) = (𝑖𝑊𝑗))
18 eqid 2651 . . . . . . 7 (𝐼(subMat1‘𝑈)𝐽) = (𝐼(subMat1‘𝑈)𝐽)
191adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
20 madjusmdet.i . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑁))
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
22 madjusmdet.j . . . . . . . 8 (𝜑𝐽 ∈ (1...𝑁))
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ (1...𝑁))
24 madjusmdetlem3.u . . . . . . . . 9 (𝜑𝑈𝐵)
25 madjusmdet.a . . . . . . . . . 10 𝐴 = ((1...𝑁) Mat 𝑅)
26 eqid 2651 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
27 madjusmdet.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
2825, 26, 27matbas2i 20276 . . . . . . . . 9 (𝑈𝐵𝑈 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
2924, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
3029adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑈 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
31 fz1ssnn 12410 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3231, 10sseldi 3634 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
3331, 12sseldi 3634 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
34 eqidd 2652 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
35 eqidd 2652 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)))
3618, 19, 19, 21, 23, 30, 32, 33, 34, 35smatlem 29991 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))))
37 madjusmdet.d . . . . . . . . 9 𝐷 = ((1...𝑁) maDet 𝑅)
38 madjusmdet.k . . . . . . . . 9 𝐾 = ((1...𝑁) maAdju 𝑅)
39 madjusmdet.t . . . . . . . . 9 · = (.r𝑅)
40 madjusmdet.z . . . . . . . . 9 𝑍 = (ℤRHom‘𝑅)
41 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
42 madjusmdet.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43 madjusmdet.m . . . . . . . . 9 (𝜑𝑀𝐵)
44 madjusmdetlem2.p . . . . . . . . 9 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
45 madjusmdetlem2.s . . . . . . . . 9 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
4627, 25, 37, 38, 39, 40, 41, 1, 42, 20, 20, 43, 44, 45madjusmdetlem2 30022 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
479, 46syldan 486 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
48 madjusmdetlem4.q . . . . . . . . 9 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
49 madjusmdetlem4.t . . . . . . . . 9 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
5027, 25, 37, 38, 39, 40, 41, 1, 42, 22, 22, 43, 48, 49madjusmdetlem2 30022 . . . . . . . 8 ((𝜑𝑗 ∈ (1...(𝑁 − 1))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5111, 50syldan 486 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5247, 51oveq12d 6708 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5336, 52eqtrd 2685 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5416, 17, 533eqtr4rd 2696 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
5554ralrimivva 3000 . . 3 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
56 eqid 2651 . . . . 5 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
5725, 27, 56, 18, 1, 20, 22, 24smatcl 29996 . . . 4 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
58 fzfid 12812 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
59 eqid 2651 . . . . . . . . . . . . . 14 (1...𝑁) = (1...𝑁)
60 eqid 2651 . . . . . . . . . . . . . 14 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
61 eqid 2651 . . . . . . . . . . . . . 14 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
6259, 44, 60, 61fzto1st 29981 . . . . . . . . . . . . 13 (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
6320, 62syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
64 eluzfz2 12387 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
653, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (1...𝑁))
6659, 45, 60, 61fzto1st 29981 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
6765, 66syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
68 eqid 2651 . . . . . . . . . . . . . . 15 (invg‘(SymGrp‘(1...𝑁))) = (invg‘(SymGrp‘(1...𝑁)))
6960, 61, 68symginv 17868 . . . . . . . . . . . . . 14 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7067, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7160symggrp 17866 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ Fin → (SymGrp‘(1...𝑁)) ∈ Grp)
7258, 71syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp)
7361, 68grpinvcl 17514 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7472, 67, 73syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7570, 74eqeltrrd 2731 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
76 eqid 2651 . . . . . . . . . . . . . 14 (+g‘(SymGrp‘(1...𝑁))) = (+g‘(SymGrp‘(1...𝑁)))
7760, 61, 76symgov 17856 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) = (𝑃𝑆))
7860, 61, 76symgcl 17857 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7977, 78eqeltrrd 2731 . . . . . . . . . . . 12 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
8063, 75, 79syl2anc 694 . . . . . . . . . . 11 (𝜑 → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
81803ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
82 simp2 1082 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8360, 61symgfv 17853 . . . . . . . . . 10 (((𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8481, 82, 83syl2anc 694 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8559, 48, 60, 61fzto1st 29981 . . . . . . . . . . . . 13 (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8622, 85syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8759, 49, 60, 61fzto1st 29981 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8865, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8960, 61, 68symginv 17868 . . . . . . . . . . . . . 14 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9088, 89syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9161, 68grpinvcl 17514 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9272, 88, 91syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9390, 92eqeltrrd 2731 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
9460, 61, 76symgov 17856 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) = (𝑄𝑇))
9560, 61, 76symgcl 17857 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9694, 95eqeltrrd 2731 . . . . . . . . . . . 12 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9786, 93, 96syl2anc 694 . . . . . . . . . . 11 (𝜑 → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
98973ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
99 simp3 1083 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
10060, 61symgfv 17853 . . . . . . . . . 10 (((𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
10198, 99, 100syl2anc 694 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
102243ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
10325, 26, 27, 84, 101, 102matecld 20280 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ (Base‘𝑅))
10425, 26, 27, 58, 42, 103matbas2d 20277 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗))) ∈ 𝐵)
10514, 104syl5eqel 2734 . . . . . 6 (𝜑𝑊𝐵)
10625, 27submatres 30000 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
1071, 105, 106syl2anc 694 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
108 eqid 2651 . . . . . 6 (𝑁(subMat1‘𝑊)𝑁) = (𝑁(subMat1‘𝑊)𝑁)
10925, 27, 56, 108, 1, 65, 65, 105smatcl 29996 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
110107, 109eqeltrrd 2731 . . . 4 (𝜑 → (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
111 eqid 2651 . . . . 5 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
112111, 56eqmat 20278 . . . 4 (((𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11357, 110, 112syl2anc 694 . . 3 (𝜑 → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11455, 113mpbird 247 . 2 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
115114, 107eqtr4d 2688 1 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  wss 3607  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  ccnv 5142  cres 5145  ccom 5147  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  cuz 11725  ...cfz 12364  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Grpcgrp 17469  invgcminusg 17470  SymGrpcsymg 17843  CRingccrg 18594  ℤRHomczrh 19896   Mat cmat 20261   maDet cmdat 20438   maAdju cmadu 20486  subMat1csmat 29987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-symg 17844  df-pmtr 17908  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mat 20262  df-subma 20431  df-smat 29988
This theorem is referenced by:  madjusmdetlem4  30024
  Copyright terms: Public domain W3C validator