Step | Hyp | Ref
| Expression |
1 | | df-made 32228 |
. . 3
⊢ M =
recs((𝑥 ∈ V ↦ (
|s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) |
2 | 1 | tfr2 7655 |
. 2
⊢ (𝐴 ∈ On → ( M
‘𝐴) = ((𝑥 ∈ V ↦ ( |s “
(𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴))) |
3 | 1 | tfr1 7654 |
. . . . 5
⊢ M Fn
On |
4 | | fnfun 6141 |
. . . . 5
⊢ ( M Fn On
→ Fun M ) |
5 | 3, 4 | ax-mp 5 |
. . . 4
⊢ Fun
M |
6 | | resfunexg 6635 |
. . . 4
⊢ ((Fun M
∧ 𝐴 ∈ On) → (
M ↾ 𝐴) ∈
V) |
7 | 5, 6 | mpan 708 |
. . 3
⊢ (𝐴 ∈ On → ( M ↾
𝐴) ∈
V) |
8 | | scutf 32217 |
. . . . 5
⊢ |s :
<<s ⟶ No |
9 | | ffun 6201 |
. . . . 5
⊢ ( |s :
<<s ⟶ No → Fun |s
) |
10 | 8, 9 | ax-mp 5 |
. . . 4
⊢ Fun
|s |
11 | | funimaexg 6128 |
. . . . . . 7
⊢ ((Fun M
∧ 𝐴 ∈ On) → (
M “ 𝐴) ∈
V) |
12 | 5, 11 | mpan 708 |
. . . . . 6
⊢ (𝐴 ∈ On → ( M “
𝐴) ∈
V) |
13 | | uniexg 7112 |
. . . . . 6
⊢ (( M
“ 𝐴) ∈ V →
∪ ( M “ 𝐴) ∈ V) |
14 | | pwexg 4991 |
. . . . . 6
⊢ (∪ ( M “ 𝐴) ∈ V → 𝒫 ∪ ( M “ 𝐴) ∈ V) |
15 | 12, 13, 14 | 3syl 18 |
. . . . 5
⊢ (𝐴 ∈ On → 𝒫
∪ ( M “ 𝐴) ∈ V) |
16 | | xpexg 7117 |
. . . . 5
⊢
((𝒫 ∪ ( M “ 𝐴) ∈ V ∧ 𝒫 ∪ ( M “ 𝐴) ∈ V) → (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) |
17 | 15, 15, 16 | syl2anc 696 |
. . . 4
⊢ (𝐴 ∈ On → (𝒫
∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) |
18 | | funimaexg 6128 |
. . . 4
⊢ ((Fun |s
∧ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫
∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) |
19 | 10, 17, 18 | sylancr 698 |
. . 3
⊢ (𝐴 ∈ On → ( |s “
(𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) |
20 | | rneq 5498 |
. . . . . . . . 9
⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴)) |
21 | | df-ima 5271 |
. . . . . . . . 9
⊢ ( M
“ 𝐴) = ran ( M
↾ 𝐴) |
22 | 20, 21 | syl6eqr 2804 |
. . . . . . . 8
⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴)) |
23 | 22 | unieqd 4590 |
. . . . . . 7
⊢ (𝑥 = ( M ↾ 𝐴) → ∪ ran
𝑥 = ∪ ( M “ 𝐴)) |
24 | 23 | pweqd 4299 |
. . . . . 6
⊢ (𝑥 = ( M ↾ 𝐴) → 𝒫 ∪ ran 𝑥 = 𝒫 ∪ ( M
“ 𝐴)) |
25 | 24 | sqxpeqd 5290 |
. . . . 5
⊢ (𝑥 = ( M ↾ 𝐴) → (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥) = (𝒫 ∪ (
M “ 𝐴) ×
𝒫 ∪ ( M “ 𝐴))) |
26 | 25 | imaeq2d 5616 |
. . . 4
⊢ (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
27 | | eqid 2752 |
. . . 4
⊢ (𝑥 ∈ V ↦ ( |s “
(𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫
∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) |
28 | 26, 27 | fvmptg 6434 |
. . 3
⊢ ((( M
↾ 𝐴) ∈ V ∧ (
|s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) → ((𝑥 ∈ V ↦ ( |s “ (𝒫
∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
29 | 7, 19, 28 | syl2anc 696 |
. 2
⊢ (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “
(𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
30 | 2, 29 | eqtrd 2786 |
1
⊢ (𝐴 ∈ On → ( M
‘𝐴) = ( |s “
(𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |