MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ma1repveval Structured version   Visualization version   GIF version

Theorem ma1repveval 20600
Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
ma1repveval ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))

Proof of Theorem ma1repveval
StepHypRef Expression
1 marepvcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 marepvcl.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 20441 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 477 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
5 ma1repvcl.1 . . . . . . . . . 10 1 = (1r𝐴)
61fveq2i 6357 . . . . . . . . . 10 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
75, 6eqtri 2783 . . . . . . . . 9 1 = (1r‘(𝑁 Mat 𝑅))
81, 2, 7mat1bas 20478 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1𝐵)
98expcom 450 . . . . . . 7 (𝑁 ∈ Fin → (𝑅 ∈ Ring → 1𝐵))
104, 9syl 17 . . . . . 6 (𝑀𝐵 → (𝑅 ∈ Ring → 1𝐵))
11103ad2ant1 1128 . . . . 5 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑅 ∈ Ring → 1𝐵))
1211impcom 445 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 1𝐵)
13 simpr2 1236 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝐶𝑉)
14 simpr3 1238 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝐾𝑁)
1512, 13, 143jca 1123 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ( 1𝐵𝐶𝑉𝐾𝑁))
16 mulmarep1el.e . . . . . 6 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
1716a1i 11 . . . . 5 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾))
1817oveqd 6832 . . . 4 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽))
19 eqid 2761 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
20 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
211, 2, 19, 20marepveval 20597 . . . 4 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
2218, 21eqtrd 2795 . . 3 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
2315, 22stoic3 1850 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
24 eqid 2761 . . . . 5 (1r𝑅) = (1r𝑅)
25 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
2643ad2ant1 1128 . . . . . 6 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
27263ad2ant2 1129 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
28 simp1 1131 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
29 simp3l 1244 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
30 simp3r 1245 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
311, 24, 25, 27, 28, 29, 30, 5mat1ov 20477 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r𝑅), 0 ))
32 eqcom 2768 . . . . . 6 (𝐼 = 𝐽𝐽 = 𝐼)
3332a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 = 𝐽𝐽 = 𝐼))
3433ifbid 4253 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐼 = 𝐽, (1r𝑅), 0 ) = if(𝐽 = 𝐼, (1r𝑅), 0 ))
3531, 34eqtrd 2795 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 1 𝐽) = if(𝐽 = 𝐼, (1r𝑅), 0 ))
3635ifeq2d 4250 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))
3723, 36eqtrd 2795 1 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  Vcvv 3341  ifcif 4231  cfv 6050  (class class class)co 6815  𝑚 cmap 8026  Fincfn 8124  Basecbs 16080  0gc0g 16323  1rcur 18722  Ringcrg 18768   Mat cmat 20436   matRepV cmatrepV 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-ot 4331  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-fzo 12681  df-seq 13017  df-hash 13333  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-hom 16189  df-cco 16190  df-0g 16325  df-gsum 16326  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-submnd 17558  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-ghm 17880  df-cntz 17971  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-subrg 19001  df-lmod 19088  df-lss 19156  df-sra 19395  df-rgmod 19396  df-dsmm 20299  df-frlm 20314  df-mamu 20413  df-mat 20437  df-marepv 20588
This theorem is referenced by:  mulmarep1el  20601  1marepvmarrepid  20604
  Copyright terms: Public domain W3C validator