![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2detleiblem6 | Structured version Visualization version GIF version |
Description: Lemma 6 for m2detleib 20655. (Contributed by AV, 20-Dec-2018.) |
Ref | Expression |
---|---|
m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
m2detleiblem1.i | ⊢ 𝐼 = (invg‘𝑅) |
Ref | Expression |
---|---|
m2detleiblem6 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 10237 | . . . . 5 ⊢ 1 ∈ V | |
2 | 2nn 11387 | . . . . 5 ⊢ 2 ∈ ℕ | |
3 | prex 5037 | . . . . . . 7 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ V | |
4 | 3 | prid2 4434 | . . . . . 6 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
5 | eqid 2771 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
6 | m2detleiblem1.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
7 | m2detleiblem1.n | . . . . . . 7 ⊢ 𝑁 = {1, 2} | |
8 | 5, 6, 7 | symg2bas 18025 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
9 | 4, 8 | syl5eleqr 2857 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → {〈1, 2〉, 〈2, 1〉} ∈ 𝑃) |
10 | 1, 2, 9 | mp2an 672 | . . . 4 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃 |
11 | eleq1 2838 | . . . 4 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑄 ∈ 𝑃 ↔ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃)) | |
12 | 10, 11 | mpbiri 248 | . . 3 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → 𝑄 ∈ 𝑃) |
13 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
14 | m2detleiblem1.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
15 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
16 | 7, 6, 13, 14, 15 | m2detleiblem1 20648 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
17 | 12, 16 | sylan2 580 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
18 | fveq2 6332 | . . . . 5 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) | |
19 | 18 | adantl 467 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) |
20 | eqid 2771 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
21 | eqid 2771 | . . . . 5 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
22 | 7, 5, 6, 20, 21 | psgnprfval2 18150 | . . . 4 ⊢ ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉}) = -1 |
23 | 19, 22 | syl6eq 2821 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = -1) |
24 | 23 | oveq1d 6808 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 ) = (-1(.g‘𝑅) 1 )) |
25 | ringgrp 18760 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
26 | eqid 2771 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
27 | 26, 15 | ringidcl 18776 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
28 | eqid 2771 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
29 | m2detleiblem1.i | . . . . 5 ⊢ 𝐼 = (invg‘𝑅) | |
30 | 26, 28, 29 | mulgm1 17770 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
31 | 25, 27, 30 | syl2anc 573 | . . 3 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
32 | 31 | adantr 466 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
33 | 17, 24, 32 | 3eqtrd 2809 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 {cpr 4318 〈cop 4322 ran crn 5250 ‘cfv 6031 (class class class)co 6793 1c1 10139 -cneg 10469 ℕcn 11222 2c2 11272 Basecbs 16064 Grpcgrp 17630 invgcminusg 17631 .gcmg 17748 SymGrpcsymg 18004 pmTrspcpmtr 18068 pmSgncpsgn 18116 1rcur 18709 Ringcrg 18755 ℤRHomczrh 20063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-xor 1613 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-xnn0 11566 df-z 11580 df-dec 11696 df-uz 11889 df-rp 12036 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-word 13495 df-lsw 13496 df-concat 13497 df-s1 13498 df-substr 13499 df-splice 13500 df-reverse 13501 df-s2 13802 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-mulg 17749 df-subg 17799 df-ghm 17866 df-gim 17909 df-oppg 17983 df-symg 18005 df-pmtr 18069 df-psgn 18118 df-cmn 18402 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-rnghom 18925 df-subrg 18988 df-cnfld 19962 df-zring 20034 df-zrh 20067 |
This theorem is referenced by: m2detleib 20655 |
Copyright terms: Public domain | W3C validator |