MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1modnnsub1 Structured version   Visualization version   GIF version

Theorem m1modnnsub1 12923
Description: Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modnnsub1 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))

Proof of Theorem m1modnnsub1
StepHypRef Expression
1 1re 10240 . . 3 1 ∈ ℝ
2 nnrp 12044 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
3 negmod 12922 . . 3 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀))
41, 2, 3sylancr 567 . 2 (𝑀 ∈ ℕ → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀))
5 nnre 11228 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
6 peano2rem 10549 . . . 4 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
75, 6syl 17 . . 3 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℝ)
8 nnm1ge0 11646 . . 3 (𝑀 ∈ ℕ → 0 ≤ (𝑀 − 1))
95ltm1d 11157 . . 3 (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀)
10 modid 12902 . . 3 ((((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ (𝑀 − 1) ∧ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1))
117, 2, 8, 9, 10syl22anc 1476 . 2 (𝑀 ∈ ℕ → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1))
124, 11eqtrd 2804 1 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144   class class class wbr 4784  (class class class)co 6792  cr 10136  0cc0 10137  1c1 10138   < clt 10275  cle 10276  cmin 10467  -cneg 10468  cn 11221  +crp 12034   mod cmo 12875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fl 12800  df-mod 12876
This theorem is referenced by:  m1modge3gt1  12924  fmtnoprmfac1lem  41994
  Copyright terms: Public domain W3C validator