Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1expevenALTV Structured version   Visualization version   GIF version

Theorem m1expevenALTV 42088
 Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.)
Assertion
Ref Expression
m1expevenALTV (𝑁 ∈ Even → (-1↑𝑁) = 1)

Proof of Theorem m1expevenALTV
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2775 . . . 4 (𝑛 = 𝑁 → (𝑛 = (2 · 𝑖) ↔ 𝑁 = (2 · 𝑖)))
21rexbidv 3200 . . 3 (𝑛 = 𝑁 → (∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
3 dfeven4 42079 . . 3 Even = {𝑛 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖)}
42, 3elrab2 3518 . 2 (𝑁 ∈ Even ↔ (𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
5 oveq2 6801 . . . . . 6 (𝑁 = (2 · 𝑖) → (-1↑𝑁) = (-1↑(2 · 𝑖)))
6 neg1cn 11326 . . . . . . . . . 10 -1 ∈ ℂ
76a1i 11 . . . . . . . . 9 (𝑖 ∈ ℤ → -1 ∈ ℂ)
8 neg1ne0 11328 . . . . . . . . . 10 -1 ≠ 0
98a1i 11 . . . . . . . . 9 (𝑖 ∈ ℤ → -1 ≠ 0)
10 2z 11611 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 (𝑖 ∈ ℤ → 2 ∈ ℤ)
12 id 22 . . . . . . . . 9 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
13 expmulz 13113 . . . . . . . . 9 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑖 ∈ ℤ)) → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
147, 9, 11, 12, 13syl22anc 1477 . . . . . . . 8 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
15 neg1sqe1 13166 . . . . . . . . . 10 (-1↑2) = 1
1615oveq1i 6803 . . . . . . . . 9 ((-1↑2)↑𝑖) = (1↑𝑖)
17 1exp 13096 . . . . . . . . 9 (𝑖 ∈ ℤ → (1↑𝑖) = 1)
1816, 17syl5eq 2817 . . . . . . . 8 (𝑖 ∈ ℤ → ((-1↑2)↑𝑖) = 1)
1914, 18eqtrd 2805 . . . . . . 7 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = 1)
2019adantl 467 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (-1↑(2 · 𝑖)) = 1)
215, 20sylan9eqr 2827 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
2221ex 397 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1))
2322rexlimdva 3179 . . 3 (𝑁 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1))
2423imp 393 . 2 ((𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
254, 24sylbi 207 1 (𝑁 ∈ Even → (-1↑𝑁) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∃wrex 3062  (class class class)co 6793  ℂcc 10136  0cc0 10138  1c1 10139   · cmul 10143  -cneg 10469  2c2 11272  ℤcz 11579  ↑cexp 13067   Even ceven 42065 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-seq 13009  df-exp 13068  df-even 42067 This theorem is referenced by:  m1expoddALTV  42089
 Copyright terms: Public domain W3C validator