![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > m1expevenALTV | Structured version Visualization version GIF version |
Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
Ref | Expression |
---|---|
m1expevenALTV | ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2775 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 = (2 · 𝑖) ↔ 𝑁 = (2 · 𝑖))) | |
2 | 1 | rexbidv 3200 | . . 3 ⊢ (𝑛 = 𝑁 → (∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖))) |
3 | dfeven4 42079 | . . 3 ⊢ Even = {𝑛 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖)} | |
4 | 2, 3 | elrab2 3518 | . 2 ⊢ (𝑁 ∈ Even ↔ (𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖))) |
5 | oveq2 6801 | . . . . . 6 ⊢ (𝑁 = (2 · 𝑖) → (-1↑𝑁) = (-1↑(2 · 𝑖))) | |
6 | neg1cn 11326 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → -1 ∈ ℂ) |
8 | neg1ne0 11328 | . . . . . . . . . 10 ⊢ -1 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → -1 ≠ 0) |
10 | 2z 11611 | . . . . . . . . . 10 ⊢ 2 ∈ ℤ | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → 2 ∈ ℤ) |
12 | id 22 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → 𝑖 ∈ ℤ) | |
13 | expmulz 13113 | . . . . . . . . 9 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑖 ∈ ℤ)) → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖)) | |
14 | 7, 9, 11, 12, 13 | syl22anc 1477 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖)) |
15 | neg1sqe1 13166 | . . . . . . . . . 10 ⊢ (-1↑2) = 1 | |
16 | 15 | oveq1i 6803 | . . . . . . . . 9 ⊢ ((-1↑2)↑𝑖) = (1↑𝑖) |
17 | 1exp 13096 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → (1↑𝑖) = 1) | |
18 | 16, 17 | syl5eq 2817 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → ((-1↑2)↑𝑖) = 1) |
19 | 14, 18 | eqtrd 2805 | . . . . . . 7 ⊢ (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = 1) |
20 | 19 | adantl 467 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (-1↑(2 · 𝑖)) = 1) |
21 | 5, 20 | sylan9eqr 2827 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1) |
22 | 21 | ex 397 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1)) |
23 | 22 | rexlimdva 3179 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1)) |
24 | 23 | imp 393 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1) |
25 | 4, 24 | sylbi 207 | 1 ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 (class class class)co 6793 ℂcc 10136 0cc0 10138 1c1 10139 · cmul 10143 -cneg 10469 2c2 11272 ℤcz 11579 ↑cexp 13067 Even ceven 42065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-n0 11495 df-z 11580 df-uz 11889 df-seq 13009 df-exp 13068 df-even 42067 |
This theorem is referenced by: m1expoddALTV 42089 |
Copyright terms: Public domain | W3C validator |