![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m1expaddsub | Structured version Visualization version GIF version |
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
m1expaddsub | ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m1expcl 13077 | . . . . . 6 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ) | |
2 | 1 | zcnd 11675 | . . . . 5 ⊢ (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ) |
3 | 2 | adantr 472 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ) |
4 | m1expcl 13077 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ) | |
5 | 4 | zcnd 11675 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ) |
6 | 5 | adantl 473 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ) |
7 | neg1cn 11316 | . . . . . 6 ⊢ -1 ∈ ℂ | |
8 | neg1ne0 11318 | . . . . . 6 ⊢ -1 ≠ 0 | |
9 | expne0i 13086 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) | |
10 | 7, 8, 9 | mp3an12 1563 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0) |
11 | 10 | adantl 473 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0) |
12 | 3, 6, 11 | divrecd 10996 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌)))) |
13 | m1expcl2 13076 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1}) | |
14 | elpri 4342 | . . . . . 6 ⊢ ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1)) | |
15 | ax-1cn 10186 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
16 | ax-1ne0 10197 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
17 | divneg2 10941 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1)) | |
18 | 15, 15, 16, 17 | mp3an 1573 | . . . . . . . . 9 ⊢ -(1 / 1) = (1 / -1) |
19 | 1div1e1 10909 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
20 | 19 | negeqi 10466 | . . . . . . . . 9 ⊢ -(1 / 1) = -1 |
21 | 18, 20 | eqtr3i 2784 | . . . . . . . 8 ⊢ (1 / -1) = -1 |
22 | oveq2 6821 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1)) | |
23 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = -1 → (-1↑𝑌) = -1) | |
24 | 21, 22, 23 | 3eqtr4a 2820 | . . . . . . 7 ⊢ ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
25 | oveq2 6821 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1)) | |
26 | id 22 | . . . . . . . 8 ⊢ ((-1↑𝑌) = 1 → (-1↑𝑌) = 1) | |
27 | 19, 25, 26 | 3eqtr4a 2820 | . . . . . . 7 ⊢ ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
28 | 24, 27 | jaoi 393 | . . . . . 6 ⊢ (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
29 | 13, 14, 28 | 3syl 18 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
30 | 29 | adantl 473 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌)) |
31 | 30 | oveq2d 6829 | . . 3 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌))) |
32 | 12, 31 | eqtrd 2794 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) |
33 | expsub 13102 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) | |
34 | 7, 8, 33 | mpanl12 720 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = ((-1↑𝑋) / (-1↑𝑌))) |
35 | expaddz 13098 | . . 3 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) | |
36 | 7, 8, 35 | mpanl12 720 | . 2 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌))) |
37 | 32, 34, 36 | 3eqtr4d 2804 | 1 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 − 𝑌)) = (-1↑(𝑋 + 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {cpr 4323 (class class class)co 6813 ℂcc 10126 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 − cmin 10458 -cneg 10459 / cdiv 10876 ℤcz 11569 ↑cexp 13054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-seq 12996 df-exp 13055 |
This theorem is referenced by: psgnuni 18119 41prothprmlem2 42045 |
Copyright terms: Public domain | W3C validator |