MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1exp1 Structured version   Visualization version   GIF version

Theorem m1exp1 15301
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))

Proof of Theorem m1exp1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 11611 . . . . . 6 2 ∈ ℤ
2 divides 15191 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
31, 2mpan 670 . . . . 5 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
4 oveq2 6801 . . . . . . . 8 (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2)))
54eqcoms 2779 . . . . . . 7 ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2)))
6 zcn 11584 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
7 2cnd 11295 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℂ)
86, 7mulcomd 10263 . . . . . . . . 9 (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛))
98oveq2d 6809 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = (-1↑(2 · 𝑛)))
10 m1expeven 13114 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
119, 10eqtrd 2805 . . . . . . 7 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = 1)
125, 11sylan9eqr 2827 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1)
1312rexlimiva 3176 . . . . 5 (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 → (-1↑𝑁) = 1)
143, 13syl6bi 243 . . . 4 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → (-1↑𝑁) = 1))
1514impcom 394 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = 1)
16 simpl 468 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → 2 ∥ 𝑁)
1715, 162thd 255 . 2 ((2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
18 ax-1ne0 10207 . . . . 5 1 ≠ 0
19 eqcom 2778 . . . . . 6 (-1 = 1 ↔ 1 = -1)
20 ax-1cn 10196 . . . . . . 7 1 ∈ ℂ
2120eqnegi 10956 . . . . . 6 (1 = -1 ↔ 1 = 0)
2219, 21bitri 264 . . . . 5 (-1 = 1 ↔ 1 = 0)
2318, 22nemtbir 3038 . . . 4 ¬ -1 = 1
24 odd2np1 15273 . . . . . . 7 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
25 oveq2 6801 . . . . . . . . . 10 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
2625eqcoms 2779 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
27 neg1cn 11326 . . . . . . . . . . . 12 -1 ∈ ℂ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ∈ ℂ)
29 neg1ne0 11328 . . . . . . . . . . . 12 -1 ≠ 0
3029a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ≠ 0)
311a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 2 ∈ ℤ)
32 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
3331, 32zmulcld 11690 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
3428, 30, 33expp1zd 13224 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
3510oveq1d 6808 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
3627mulid2i 10245 . . . . . . . . . . 11 (1 · -1) = -1
3735, 36syl6eq 2821 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
3834, 37eqtrd 2805 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
3926, 38sylan9eqr 2827 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
4039rexlimiva 3176 . . . . . . 7 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)
4124, 40syl6bi 243 . . . . . 6 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
4241impcom 394 . . . . 5 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = -1)
4342eqeq1d 2773 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ -1 = 1))
4423, 43mtbiri 316 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ (-1↑𝑁) = 1)
45 simpl 468 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ 2 ∥ 𝑁)
4644, 452falsed 365 . 2 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
4717, 46pm2.61ian 813 1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4786  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  -cneg 10469  2c2 11272  cz 11579  cexp 13067  cdvds 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-seq 13009  df-exp 13068  df-dvds 15190
This theorem is referenced by:  2lgs  25353  2lgsoddprm  25362
  Copyright terms: Public domain W3C validator