Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzenom Structured version   Visualization version   GIF version

Theorem lzenom 37835
Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
lzenom (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)

Proof of Theorem lzenom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11578 . . . 4 ℤ ∈ V
2 difexg 4960 . . . 4 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
31, 2mp1i 13 . . 3 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
4 nnex 11218 . . . 4 ℕ ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℤ → ℕ ∈ V)
6 ovex 6841 . . . 4 ((𝑁 + 1) − 𝑎) ∈ V
762a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 𝑎) ∈ V))
8 ovex 6841 . . . 4 ((𝑁 + 1) − 𝑏) ∈ V
982a1i 12 . . 3 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ → ((𝑁 + 1) − 𝑏) ∈ V))
10 simpl 474 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℤ)
1110peano2zd 11677 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℤ)
12 simprl 811 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℤ)
1311, 12zsubcld 11679 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 𝑎) ∈ ℤ)
14 zre 11573 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
1514ad2antrl 766 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℝ)
1611zred 11674 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℝ)
17 1red 10247 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ∈ ℝ)
18 simprr 813 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎𝑁)
19 zcn 11574 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2019adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑁 ∈ ℂ)
21 ax-1cn 10186 . . . . . . . . . . 11 1 ∈ ℂ
22 pncan 10479 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2320, 21, 22sylancl 697 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − 1) = 𝑁)
2418, 23breqtrrd 4832 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ≤ ((𝑁 + 1) − 1))
2515, 16, 17, 24lesubd 10823 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 1 ≤ ((𝑁 + 1) − 𝑎))
2611zcnd 11675 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → (𝑁 + 1) ∈ ℂ)
27 zcn 11574 . . . . . . . . . . 11 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2827ad2antrl 766 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 ∈ ℂ)
2926, 28nncand 10589 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)) = 𝑎)
3029eqcomd 2766 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3113, 25, 30jca31 558 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑎𝑁)) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3231adantrr 755 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
33 eleq1 2827 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑏 ∈ ℤ ↔ ((𝑁 + 1) − 𝑎) ∈ ℤ))
34 breq2 4808 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → (1 ≤ 𝑏 ↔ 1 ≤ ((𝑁 + 1) − 𝑎)))
3533, 34anbi12d 749 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ↔ (((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎))))
36 oveq2 6821 . . . . . . . . 9 (𝑏 = ((𝑁 + 1) − 𝑎) → ((𝑁 + 1) − 𝑏) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))
3736eqeq2d 2770 . . . . . . . 8 (𝑏 = ((𝑁 + 1) − 𝑎) → (𝑎 = ((𝑁 + 1) − 𝑏) ↔ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎))))
3835, 37anbi12d 749 . . . . . . 7 (𝑏 = ((𝑁 + 1) − 𝑎) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
3938ad2antll 767 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → (((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((((𝑁 + 1) − 𝑎) ∈ ℤ ∧ 1 ≤ ((𝑁 + 1) − 𝑎)) ∧ 𝑎 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑎)))))
4032, 39mpbird 247 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))) → ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏)))
41 simpl 474 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℤ)
4241peano2zd 11677 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℤ)
43 simprl 811 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℤ)
4442, 43zsubcld 11679 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ∈ ℤ)
4542zred 11674 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℝ)
46 zre 11573 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℝ)
48 zre 11573 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
4948ad2antrl 766 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℝ)
5047recnd 10260 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑁 ∈ ℂ)
51 pncan2 10480 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 𝑁) = 1)
5250, 21, 51sylancl 697 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) = 1)
53 simprr 813 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 1 ≤ 𝑏)
5452, 53eqbrtrd 4826 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑁) ≤ 𝑏)
5545, 47, 49, 54subled 10822 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − 𝑏) ≤ 𝑁)
5642zcnd 11675 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → (𝑁 + 1) ∈ ℂ)
57 zcn 11574 . . . . . . . . . . 11 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5857ad2antrl 766 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 ∈ ℂ)
5956, 58nncand 10589 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)) = 𝑏)
6059eqcomd 2766 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6144, 55, 60jca31 558 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6261adantrr 755 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
63 eleq1 2827 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎 ∈ ℤ ↔ ((𝑁 + 1) − 𝑏) ∈ ℤ))
64 breq1 4807 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑎𝑁 ↔ ((𝑁 + 1) − 𝑏) ≤ 𝑁))
6563, 64anbi12d 749 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ↔ (((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁)))
66 oveq2 6821 . . . . . . . . 9 (𝑎 = ((𝑁 + 1) − 𝑏) → ((𝑁 + 1) − 𝑎) = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))
6766eqeq2d 2770 . . . . . . . 8 (𝑎 = ((𝑁 + 1) − 𝑏) → (𝑏 = ((𝑁 + 1) − 𝑎) ↔ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏))))
6865, 67anbi12d 749 . . . . . . 7 (𝑎 = ((𝑁 + 1) − 𝑏) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
6968ad2antll 767 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((((𝑁 + 1) − 𝑏) ∈ ℤ ∧ ((𝑁 + 1) − 𝑏) ≤ 𝑁) ∧ 𝑏 = ((𝑁 + 1) − ((𝑁 + 1) − 𝑏)))))
7062, 69mpbird 247 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))) → ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)))
7140, 70impbida 913 . . . 4 (𝑁 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
72 ellz1 37832 . . . . 5 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
7372anbi1d 743 . . . 4 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ 𝑏 = ((𝑁 + 1) − 𝑎))))
74 elnnz1 11595 . . . . . 6 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏))
7574a1i 11 . . . . 5 (𝑁 ∈ ℤ → (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 1 ≤ 𝑏)))
7675anbi1d 743 . . . 4 (𝑁 ∈ ℤ → ((𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏)) ↔ ((𝑏 ∈ ℤ ∧ 1 ≤ 𝑏) ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
7771, 73, 763bitr4d 300 . . 3 (𝑁 ∈ ℤ → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑏 = ((𝑁 + 1) − 𝑎)) ↔ (𝑏 ∈ ℕ ∧ 𝑎 = ((𝑁 + 1) − 𝑏))))
783, 5, 7, 9, 77en2d 8157 . 2 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ)
79 nnenom 12973 . 2 ℕ ≈ ω
80 entr 8173 . 2 (((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ℕ ∧ ℕ ≈ ω) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
8178, 79, 80sylancl 697 1 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cdif 3712   class class class wbr 4804  cfv 6049  (class class class)co 6813  ωcom 7230  cen 8118  cc 10126  cr 10127  1c1 10129   + caddc 10131  cle 10267  cmin 10458  cn 11212  cz 11569  cuz 11879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880
This theorem is referenced by:  diophin  37838  diophren  37879
  Copyright terms: Public domain W3C validator