![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolset | Structured version Visualization version GIF version |
Description: The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvolset | ⊢ (𝐾 ∈ 𝐴 → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
2 | lvolset.v | . . 3 ⊢ 𝑉 = (LVols‘𝐾) | |
3 | fveq2 6353 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
4 | lvolset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 3, 4 | syl6eqr 2812 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
6 | fveq2 6353 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LPlanes‘𝑘) = (LPlanes‘𝐾)) | |
7 | lvolset.p | . . . . . . 7 ⊢ 𝑃 = (LPlanes‘𝐾) | |
8 | 6, 7 | syl6eqr 2812 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LPlanes‘𝑘) = 𝑃) |
9 | fveq2 6353 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
10 | lvolset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
11 | 9, 10 | syl6eqr 2812 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
12 | 11 | breqd 4815 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥 ↔ 𝑦𝐶𝑥)) |
13 | 8, 12 | rexeqbidv 3292 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥)) |
14 | 5, 13 | rabeqbidv 3335 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
15 | df-lvols 35307 | . . . 4 ⊢ LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥}) | |
16 | fvex 6363 | . . . . . 6 ⊢ (Base‘𝐾) ∈ V | |
17 | 4, 16 | eqeltri 2835 | . . . . 5 ⊢ 𝐵 ∈ V |
18 | 17 | rabex 4964 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥} ∈ V |
19 | 14, 15, 18 | fvmpt 6445 | . . 3 ⊢ (𝐾 ∈ V → (LVols‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
20 | 2, 19 | syl5eq 2806 | . 2 ⊢ (𝐾 ∈ V → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 {crab 3054 Vcvv 3340 class class class wbr 4804 ‘cfv 6049 Basecbs 16079 ⋖ ccvr 35070 LPlanesclpl 35299 LVolsclvol 35300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-lvols 35307 |
This theorem is referenced by: islvol 35380 |
Copyright terms: Public domain | W3C validator |