Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoln0N Structured version   Visualization version   GIF version

Theorem lvoln0N 35195
Description: A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lvoln0.z 0 = (0.‘𝐾)
lvoln0.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoln0N ((𝐾 ∈ HL ∧ 𝑋𝑉) → 𝑋0 )

Proof of Theorem lvoln0N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
21atex 35010 . . . 4 (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅)
3 n0 3964 . . . 4 ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
42, 3sylib 208 . . 3 (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
54adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
6 eqid 2651 . . . . 5 (le‘𝐾) = (le‘𝐾)
7 lvoln0.v . . . . 5 𝑉 = (LVols‘𝐾)
86, 1, 7lvolnleat 35187 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
983expa 1284 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
10 hlop 34967 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1110ad2antrr 762 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
12 eqid 2651 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 1atbase 34894 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1413adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾))
15 lvoln0.z . . . . . . 7 0 = (0.‘𝐾)
1612, 6, 15op0le 34791 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝)
1711, 14, 16syl2anc 694 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝)
18 breq1 4688 . . . . 5 (𝑋 = 0 → (𝑋(le‘𝐾)𝑝0 (le‘𝐾)𝑝))
1917, 18syl5ibrcom 237 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0𝑋(le‘𝐾)𝑝))
2019necon3bd 2837 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝𝑋0 ))
219, 20mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋0 )
225, 21exlimddv 1903 1 ((𝐾 ∈ HL ∧ 𝑋𝑉) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  c0 3948   class class class wbr 4685  cfv 5926  Basecbs 15904  lecple 15995  0.cp0 17084  OPcops 34777  Atomscatm 34868  HLchlt 34955  LVolsclvol 35097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator