![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecpsslmod | Structured version Visualization version GIF version |
Description: The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 19229) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 42710. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
lvecpsslmod | ⊢ LVec ⊊ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 19229 | . . 3 ⊢ (𝑣 ∈ LVec → 𝑣 ∈ LMod) | |
2 | 1 | ssriv 3713 | . 2 ⊢ LVec ⊆ LMod |
3 | vex 3307 | . . . 4 ⊢ 𝑖 ∈ V | |
4 | vex 3307 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 3, 4 | pm3.2i 470 | . . 3 ⊢ (𝑖 ∈ V ∧ 𝑧 ∈ V) |
6 | eqid 2724 | . . . . 5 ⊢ {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉} = {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉} | |
7 | eqid 2724 | . . . . 5 ⊢ ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) = ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) | |
8 | 6, 7 | lmod1zr 42709 | . . . 4 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LMod) |
9 | 6, 7 | lmod1zrnlvec 42710 | . . . . 5 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∉ LVec) |
10 | df-nel 3000 | . . . . 5 ⊢ (({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∉ LVec ↔ ¬ ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LVec) | |
11 | 9, 10 | sylib 208 | . . . 4 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ¬ ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LVec) |
12 | 8, 11 | jca 555 | . . 3 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → (({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LMod ∧ ¬ ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LVec)) |
13 | nelne1 2992 | . . . 4 ⊢ ((({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LMod ∧ ¬ ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LVec) → LMod ≠ LVec) | |
14 | 13 | necomd 2951 | . . 3 ⊢ ((({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LMod ∧ ¬ ({〈(Base‘ndx), {𝑖}〉, 〈(+g‘ndx), {〈〈𝑖, 𝑖〉, 𝑖〉}〉, 〈(Scalar‘ndx), {〈(Base‘ndx), {𝑧}〉, 〈(+g‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉, 〈(.r‘ndx), {〈〈𝑧, 𝑧〉, 𝑧〉}〉}〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑧, 𝑖〉, 𝑖〉}〉}) ∈ LVec) → LVec ≠ LMod) |
15 | 5, 12, 14 | mp2b 10 | . 2 ⊢ LVec ≠ LMod |
16 | df-pss 3696 | . 2 ⊢ (LVec ⊊ LMod ↔ (LVec ⊆ LMod ∧ LVec ≠ LMod)) | |
17 | 2, 15, 16 | mpbir2an 993 | 1 ⊢ LVec ⊊ LMod |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 ∈ wcel 2103 ≠ wne 2896 ∉ wnel 2999 Vcvv 3304 ∪ cun 3678 ⊆ wss 3680 ⊊ wpss 3681 {csn 4285 {ctp 4289 〈cop 4291 ‘cfv 6001 ndxcnx 15977 Basecbs 15980 +gcplusg 16064 .rcmulr 16065 Scalarcsca 16067 ·𝑠 cvsca 16068 LModclmod 18986 LVecclvec 19225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-tpos 7472 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-card 8878 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-n0 11406 df-xnn0 11477 df-z 11491 df-uz 11801 df-fz 12441 df-hash 13233 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-minusg 17548 df-mgp 18611 df-ur 18623 df-ring 18670 df-oppr 18744 df-dvdsr 18762 df-unit 18763 df-drng 18872 df-lmod 18988 df-lvec 19226 df-nzr 19381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |