![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
lvecpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lvecpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lvecpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lvecpropd.4 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) |
lvecpropd.5 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) |
lvecpropd.6 | ⊢ 𝑃 = (Base‘𝐹) |
lvecpropd.7 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
Ref | Expression |
---|---|
lvecpropd | ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | lvecpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | lvecpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | lvecpropd.4 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) | |
5 | lvecpropd.5 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) | |
6 | lvecpropd.6 | . . . 4 ⊢ 𝑃 = (Base‘𝐹) | |
7 | lvecpropd.7 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | lmodpropd 18974 | . . 3 ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
9 | 4, 5 | eqtr3d 2687 | . . . 4 ⊢ (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿)) |
10 | 9 | eleq1d 2715 | . . 3 ⊢ (𝜑 → ((Scalar‘𝐾) ∈ DivRing ↔ (Scalar‘𝐿) ∈ DivRing)) |
11 | 8, 10 | anbi12d 747 | . 2 ⊢ (𝜑 → ((𝐾 ∈ LMod ∧ (Scalar‘𝐾) ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ (Scalar‘𝐿) ∈ DivRing))) |
12 | eqid 2651 | . . 3 ⊢ (Scalar‘𝐾) = (Scalar‘𝐾) | |
13 | 12 | islvec 19152 | . 2 ⊢ (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ (Scalar‘𝐾) ∈ DivRing)) |
14 | eqid 2651 | . . 3 ⊢ (Scalar‘𝐿) = (Scalar‘𝐿) | |
15 | 14 | islvec 19152 | . 2 ⊢ (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ (Scalar‘𝐿) ∈ DivRing)) |
16 | 11, 13, 15 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Scalarcsca 15991 ·𝑠 cvsca 15992 DivRingcdr 18795 LModclmod 18911 LVecclvec 19150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-mgp 18536 df-ur 18548 df-ring 18595 df-lmod 18913 df-lvec 19151 |
This theorem is referenced by: phlpropd 20048 |
Copyright terms: Public domain | W3C validator |