![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecprop2d | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 19369 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
lvecprop2d.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lvecprop2d.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lvecprop2d.f | ⊢ 𝐹 = (Scalar‘𝐾) |
lvecprop2d.g | ⊢ 𝐺 = (Scalar‘𝐿) |
lvecprop2d.p1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
lvecprop2d.p2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
lvecprop2d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lvecprop2d.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
lvecprop2d.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦)) |
lvecprop2d.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
Ref | Expression |
---|---|
lvecprop2d | ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecprop2d.b1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | lvecprop2d.b2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | lvecprop2d.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝐾) | |
4 | lvecprop2d.g | . . . 4 ⊢ 𝐺 = (Scalar‘𝐿) | |
5 | lvecprop2d.p1 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
6 | lvecprop2d.p2 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
7 | lvecprop2d.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
8 | lvecprop2d.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) | |
9 | lvecprop2d.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦)) | |
10 | lvecprop2d.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | lmodprop2d 19127 | . . 3 ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
12 | 5, 6, 8, 9 | drngpropd 18976 | . . 3 ⊢ (𝜑 → (𝐹 ∈ DivRing ↔ 𝐺 ∈ DivRing)) |
13 | 11, 12 | anbi12d 749 | . 2 ⊢ (𝜑 → ((𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing))) |
14 | 3 | islvec 19306 | . 2 ⊢ (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
15 | 4 | islvec 19306 | . 2 ⊢ (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing)) |
16 | 13, 14, 15 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 .rcmulr 16144 Scalarcsca 16146 ·𝑠 cvsca 16147 DivRingcdr 18949 LModclmod 19065 LVecclvec 19304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-mulr 16157 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-dvdsr 18841 df-unit 18842 df-drng 18951 df-lmod 19067 df-lvec 19305 |
This theorem is referenced by: hlhillvec 37745 |
Copyright terms: Public domain | W3C validator |