MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecinv Structured version   Visualization version   GIF version

Theorem lvecinv 19326
Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lvecinv.v 𝑉 = (Base‘𝑊)
lvecinv.t · = ( ·𝑠𝑊)
lvecinv.f 𝐹 = (Scalar‘𝑊)
lvecinv.k 𝐾 = (Base‘𝐹)
lvecinv.o 0 = (0g𝐹)
lvecinv.i 𝐼 = (invr𝐹)
lvecinv.w (𝜑𝑊 ∈ LVec)
lvecinv.a (𝜑𝐴 ∈ (𝐾 ∖ { 0 }))
lvecinv.x (𝜑𝑋𝑉)
lvecinv.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lvecinv (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼𝐴) · 𝑋)))

Proof of Theorem lvecinv
StepHypRef Expression
1 oveq2 6801 . . . 4 (𝑋 = (𝐴 · 𝑌) → ((𝐼𝐴) · 𝑋) = ((𝐼𝐴) · (𝐴 · 𝑌)))
2 lvecinv.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
3 lvecinv.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
43lvecdrng 19318 . . . . . . . 8 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
52, 4syl 17 . . . . . . 7 (𝜑𝐹 ∈ DivRing)
6 lvecinv.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐾 ∖ { 0 }))
76eldifad 3735 . . . . . . 7 (𝜑𝐴𝐾)
8 eldifsni 4457 . . . . . . . 8 (𝐴 ∈ (𝐾 ∖ { 0 }) → 𝐴0 )
96, 8syl 17 . . . . . . 7 (𝜑𝐴0 )
10 lvecinv.k . . . . . . . 8 𝐾 = (Base‘𝐹)
11 lvecinv.o . . . . . . . 8 0 = (0g𝐹)
12 eqid 2771 . . . . . . . 8 (.r𝐹) = (.r𝐹)
13 eqid 2771 . . . . . . . 8 (1r𝐹) = (1r𝐹)
14 lvecinv.i . . . . . . . 8 𝐼 = (invr𝐹)
1510, 11, 12, 13, 14drnginvrl 18976 . . . . . . 7 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → ((𝐼𝐴)(.r𝐹)𝐴) = (1r𝐹))
165, 7, 9, 15syl3anc 1476 . . . . . 6 (𝜑 → ((𝐼𝐴)(.r𝐹)𝐴) = (1r𝐹))
1716oveq1d 6808 . . . . 5 (𝜑 → (((𝐼𝐴)(.r𝐹)𝐴) · 𝑌) = ((1r𝐹) · 𝑌))
18 lveclmod 19319 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
192, 18syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
2010, 11, 14drnginvrcl 18974 . . . . . . 7 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → (𝐼𝐴) ∈ 𝐾)
215, 7, 9, 20syl3anc 1476 . . . . . 6 (𝜑 → (𝐼𝐴) ∈ 𝐾)
22 lvecinv.y . . . . . 6 (𝜑𝑌𝑉)
23 lvecinv.v . . . . . . 7 𝑉 = (Base‘𝑊)
24 lvecinv.t . . . . . . 7 · = ( ·𝑠𝑊)
2523, 3, 24, 10, 12lmodvsass 19098 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝐼𝐴) ∈ 𝐾𝐴𝐾𝑌𝑉)) → (((𝐼𝐴)(.r𝐹)𝐴) · 𝑌) = ((𝐼𝐴) · (𝐴 · 𝑌)))
2619, 21, 7, 22, 25syl13anc 1478 . . . . 5 (𝜑 → (((𝐼𝐴)(.r𝐹)𝐴) · 𝑌) = ((𝐼𝐴) · (𝐴 · 𝑌)))
2723, 3, 24, 13lmodvs1 19101 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r𝐹) · 𝑌) = 𝑌)
2819, 22, 27syl2anc 573 . . . . 5 (𝜑 → ((1r𝐹) · 𝑌) = 𝑌)
2917, 26, 283eqtr3d 2813 . . . 4 (𝜑 → ((𝐼𝐴) · (𝐴 · 𝑌)) = 𝑌)
301, 29sylan9eqr 2827 . . 3 ((𝜑𝑋 = (𝐴 · 𝑌)) → ((𝐼𝐴) · 𝑋) = 𝑌)
3110, 11, 12, 13, 14drnginvrr 18977 . . . . . . 7 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → (𝐴(.r𝐹)(𝐼𝐴)) = (1r𝐹))
325, 7, 9, 31syl3anc 1476 . . . . . 6 (𝜑 → (𝐴(.r𝐹)(𝐼𝐴)) = (1r𝐹))
3332oveq1d 6808 . . . . 5 (𝜑 → ((𝐴(.r𝐹)(𝐼𝐴)) · 𝑋) = ((1r𝐹) · 𝑋))
34 lvecinv.x . . . . . 6 (𝜑𝑋𝑉)
3523, 3, 24, 10, 12lmodvsass 19098 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ (𝐼𝐴) ∈ 𝐾𝑋𝑉)) → ((𝐴(.r𝐹)(𝐼𝐴)) · 𝑋) = (𝐴 · ((𝐼𝐴) · 𝑋)))
3619, 7, 21, 34, 35syl13anc 1478 . . . . 5 (𝜑 → ((𝐴(.r𝐹)(𝐼𝐴)) · 𝑋) = (𝐴 · ((𝐼𝐴) · 𝑋)))
3723, 3, 24, 13lmodvs1 19101 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
3819, 34, 37syl2anc 573 . . . . 5 (𝜑 → ((1r𝐹) · 𝑋) = 𝑋)
3933, 36, 383eqtr3rd 2814 . . . 4 (𝜑𝑋 = (𝐴 · ((𝐼𝐴) · 𝑋)))
40 oveq2 6801 . . . 4 (((𝐼𝐴) · 𝑋) = 𝑌 → (𝐴 · ((𝐼𝐴) · 𝑋)) = (𝐴 · 𝑌))
4139, 40sylan9eq 2825 . . 3 ((𝜑 ∧ ((𝐼𝐴) · 𝑋) = 𝑌) → 𝑋 = (𝐴 · 𝑌))
4230, 41impbida 802 . 2 (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ ((𝐼𝐴) · 𝑋) = 𝑌))
43 eqcom 2778 . 2 (((𝐼𝐴) · 𝑋) = 𝑌𝑌 = ((𝐼𝐴) · 𝑋))
4442, 43syl6bb 276 1 (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼𝐴) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  wne 2943  cdif 3720  {csn 4316  cfv 6031  (class class class)co 6793  Basecbs 16064  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  1rcur 18709  invrcinvr 18879  DivRingcdr 18957  LModclmod 19073  LVecclvec 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lvec 19316
This theorem is referenced by:  lspexch  19343
  Copyright terms: Public domain W3C validator