![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecindp | Structured version Visualization version GIF version |
Description: Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.) |
Ref | Expression |
---|---|
lvecindp.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecindp.p | ⊢ + = (+g‘𝑊) |
lvecindp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecindp.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecindp.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecindp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lvecindp.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecindp.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lvecindp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecindp.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
lvecindp.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
lvecindp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
lvecindp.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecindp.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lvecindp.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍)) |
Ref | Expression |
---|---|
lvecindp | ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝑌 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecindp.p | . . . 4 ⊢ + = (+g‘𝑊) | |
2 | eqid 2770 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
3 | eqid 2770 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
4 | lvecindp.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 19318 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | lvecindp.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | lvecindp.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2770 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
10 | 8, 9 | lspsnsubg 19192 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊)) |
11 | 6, 7, 10 | syl2anc 565 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊)) |
12 | lvecindp.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
13 | 12 | lsssssubg 19170 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
14 | 6, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
15 | lvecindp.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
16 | 14, 15 | sseldd 3751 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
17 | lvecindp.n | . . . . 5 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
18 | 8, 2, 9, 12, 4, 15, 7, 17 | lspdisj 19337 | . . . 4 ⊢ (𝜑 → (((LSpan‘𝑊)‘{𝑋}) ∩ 𝑈) = {(0g‘𝑊)}) |
19 | lmodabl 19119 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
20 | 6, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
21 | 3, 20, 11, 16 | ablcntzd 18466 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((Cntz‘𝑊)‘𝑈)) |
22 | lvecindp.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
23 | lvecindp.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
24 | lvecindp.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
25 | lvecindp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
26 | 8, 22, 23, 24, 9, 6, 25, 7 | lspsneli 19213 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋})) |
27 | lvecindp.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
28 | 8, 22, 23, 24, 9, 6, 27, 7 | lspsneli 19213 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋})) |
29 | lvecindp.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
30 | lvecindp.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
31 | lvecindp.e | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍)) | |
32 | 1, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31 | subgdisj1 18310 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑋)) |
33 | 2, 12, 6, 15, 17 | lssvneln0 19161 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ (0g‘𝑊)) |
34 | 8, 22, 23, 24, 2, 4, 25, 27, 7, 33 | lvecvscan2 19324 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
35 | 32, 34 | mpbid 222 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
36 | 1, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31 | subgdisj2 18311 | . 2 ⊢ (𝜑 → 𝑌 = 𝑍) |
37 | 35, 36 | jca 495 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝑌 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 {csn 4314 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 Scalarcsca 16151 ·𝑠 cvsca 16152 0gc0g 16307 SubGrpcsubg 17795 Cntzccntz 17954 Abelcabl 18400 LModclmod 19072 LSubSpclss 19141 LSpanclspn 19183 LVecclvec 19314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-minusg 17633 df-sbg 17634 df-subg 17798 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-drng 18958 df-lmod 19074 df-lss 19142 df-lsp 19184 df-lvec 19315 |
This theorem is referenced by: baerlem3lem1 37510 baerlem5alem1 37511 baerlem5blem1 37512 |
Copyright terms: Public domain | W3C validator |