MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp Structured version   Visualization version   GIF version

Theorem lvecindp 19351
Description: Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.)
Hypotheses
Ref Expression
lvecindp.v 𝑉 = (Base‘𝑊)
lvecindp.p + = (+g𝑊)
lvecindp.f 𝐹 = (Scalar‘𝑊)
lvecindp.k 𝐾 = (Base‘𝐹)
lvecindp.t · = ( ·𝑠𝑊)
lvecindp.s 𝑆 = (LSubSp‘𝑊)
lvecindp.w (𝜑𝑊 ∈ LVec)
lvecindp.u (𝜑𝑈𝑆)
lvecindp.x (𝜑𝑋𝑉)
lvecindp.n (𝜑 → ¬ 𝑋𝑈)
lvecindp.y (𝜑𝑌𝑈)
lvecindp.z (𝜑𝑍𝑈)
lvecindp.a (𝜑𝐴𝐾)
lvecindp.b (𝜑𝐵𝐾)
lvecindp.e (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
Assertion
Ref Expression
lvecindp (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))

Proof of Theorem lvecindp
StepHypRef Expression
1 lvecindp.p . . . 4 + = (+g𝑊)
2 eqid 2770 . . . 4 (0g𝑊) = (0g𝑊)
3 eqid 2770 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
4 lvecindp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
5 lveclmod 19318 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
7 lvecindp.x . . . . 5 (𝜑𝑋𝑉)
8 lvecindp.v . . . . . 6 𝑉 = (Base‘𝑊)
9 eqid 2770 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
108, 9lspsnsubg 19192 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
116, 7, 10syl2anc 565 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
12 lvecindp.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
1312lsssssubg 19170 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
146, 13syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
15 lvecindp.u . . . . 5 (𝜑𝑈𝑆)
1614, 15sseldd 3751 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
17 lvecindp.n . . . . 5 (𝜑 → ¬ 𝑋𝑈)
188, 2, 9, 12, 4, 15, 7, 17lspdisj 19337 . . . 4 (𝜑 → (((LSpan‘𝑊)‘{𝑋}) ∩ 𝑈) = {(0g𝑊)})
19 lmodabl 19119 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
206, 19syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
213, 20, 11, 16ablcntzd 18466 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((Cntz‘𝑊)‘𝑈))
22 lvecindp.t . . . . 5 · = ( ·𝑠𝑊)
23 lvecindp.f . . . . 5 𝐹 = (Scalar‘𝑊)
24 lvecindp.k . . . . 5 𝐾 = (Base‘𝐹)
25 lvecindp.a . . . . 5 (𝜑𝐴𝐾)
268, 22, 23, 24, 9, 6, 25, 7lspsneli 19213 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
27 lvecindp.b . . . . 5 (𝜑𝐵𝐾)
288, 22, 23, 24, 9, 6, 27, 7lspsneli 19213 . . . 4 (𝜑 → (𝐵 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
29 lvecindp.y . . . 4 (𝜑𝑌𝑈)
30 lvecindp.z . . . 4 (𝜑𝑍𝑈)
31 lvecindp.e . . . 4 (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
321, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj1 18310 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑋))
332, 12, 6, 15, 17lssvneln0 19161 . . . 4 (𝜑𝑋 ≠ (0g𝑊))
348, 22, 23, 24, 2, 4, 25, 27, 7, 33lvecvscan2 19324 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
3532, 34mpbid 222 . 2 (𝜑𝐴 = 𝐵)
361, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj2 18311 . 2 (𝜑𝑌 = 𝑍)
3735, 36jca 495 1 (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1630  wcel 2144  wss 3721  {csn 4314  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307  SubGrpcsubg 17795  Cntzccntz 17954  Abelcabl 18400  LModclmod 19072  LSubSpclss 19141  LSpanclspn 19183  LVecclvec 19314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315
This theorem is referenced by:  baerlem3lem1  37510  baerlem5alem1  37511  baerlem5blem1  37512
  Copyright terms: Public domain W3C validator