![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version |
Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | islvec 19317 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
3 | 2 | simprbi 484 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 Scalarcsca 16152 DivRingcdr 18957 LModclmod 19073 LVecclvec 19315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-lvec 19316 |
This theorem is referenced by: lsslvec 19320 lvecvs0or 19321 lssvs0or 19323 lvecinv 19326 lspsnvs 19327 lspsneq 19335 lspfixed 19341 lspfixedOLD 19342 lspexch 19343 lspsolv 19357 islbs2 19369 islbs3 19370 obsne0 20286 islinds4 20391 nvctvc 22724 lssnvc 22726 cvsunit 23150 cvsdivcl 23152 cphsubrg 23199 cphreccl 23200 cphqss 23207 tchclm 23250 ipcau2 23252 tchcph 23255 hlprlem 23382 ishl2 23385 lfl1 34879 lkrsc 34906 eqlkr3 34910 lkrlsp 34911 lkrshp 34914 lduallvec 34963 dochkr1 37288 dochkr1OLDN 37289 lcfl7lem 37309 lclkrlem2m 37329 lclkrlem2o 37331 lclkrlem2p 37332 lcfrlem1 37352 lcfrlem2 37353 lcfrlem3 37354 lcfrlem29 37381 lcfrlem31 37383 lcfrlem33 37385 mapdpglem17N 37498 mapdpglem18 37499 mapdpglem19 37500 mapdpglem21 37502 mapdpglem22 37503 hdmapip1 37726 hgmapvvlem1 37733 hgmapvvlem2 37734 hgmapvvlem3 37735 lincreslvec3 42796 isldepslvec2 42799 |
Copyright terms: Public domain | W3C validator |