![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubub | Structured version Visualization version GIF version |
Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
lublem.l | ⊢ ≤ = (le‘𝐾) |
lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubub | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lublem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lublem.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lublem.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
4 | 1, 2, 3 | lublem 17339 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) |
5 | 4 | simpld 477 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆)) |
6 | breq1 4807 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ (𝑈‘𝑆) ↔ 𝑋 ≤ (𝑈‘𝑆))) | |
7 | 6 | rspccva 3448 | . 2 ⊢ ((∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) |
8 | 5, 7 | stoic3 1850 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ≤ (𝑈‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 class class class wbr 4804 ‘cfv 6049 Basecbs 16079 lecple 16170 lubclub 17163 CLatccla 17328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-lub 17195 df-clat 17329 |
This theorem is referenced by: lubss 17342 |
Copyright terms: Public domain | W3C validator |