MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublecllem Structured version   Visualization version   GIF version

Theorem lublecllem 17035
Description: Lemma for lublecl 17036 and lubid 17037. (Contributed by NM, 8-Sep-2018.)
Hypotheses
Ref Expression
lublecl.b 𝐵 = (Base‘𝐾)
lublecl.l = (le‘𝐾)
lublecl.u 𝑈 = (lub‘𝐾)
lublecl.k (𝜑𝐾 ∈ Poset)
lublecl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
lublecllem ((𝜑𝑥𝐵) → ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐾,𝑥,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑦)

Proof of Theorem lublecllem
StepHypRef Expression
1 breq1 4688 . . . 4 (𝑦 = 𝑧 → (𝑦 𝑋𝑧 𝑋))
21ralrab 3401 . . 3 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ↔ ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥))
31ralrab 3401 . . . . 5 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤 ↔ ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤))
43imbi1i 338 . . . 4 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤) ↔ (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤))
54ralbii 3009 . . 3 (∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤) ↔ ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤))
62, 5anbi12i 733 . 2 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥) ∧ ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤)))
7 lublecl.x . . . . . 6 (𝜑𝑋𝐵)
8 lublecl.k . . . . . . . 8 (𝜑𝐾 ∈ Poset)
9 lublecl.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
10 lublecl.l . . . . . . . . 9 = (le‘𝐾)
119, 10posref 16998 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
128, 7, 11syl2anc 694 . . . . . . 7 (𝜑𝑋 𝑋)
13 breq1 4688 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧 𝑋𝑋 𝑋))
14 breq1 4688 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧 𝑥𝑋 𝑥))
1513, 14imbi12d 333 . . . . . . . 8 (𝑧 = 𝑋 → ((𝑧 𝑋𝑧 𝑥) ↔ (𝑋 𝑋𝑋 𝑥)))
1615rspcva 3338 . . . . . . 7 ((𝑋𝐵 ∧ ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥)) → (𝑋 𝑋𝑋 𝑥))
1712, 16syl5com 31 . . . . . 6 (𝜑 → ((𝑋𝐵 ∧ ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥)) → 𝑋 𝑥))
187, 17mpand 711 . . . . 5 (𝜑 → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥) → 𝑋 𝑥))
1918adantr 480 . . . 4 ((𝜑𝑥𝐵) → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥) → 𝑋 𝑥))
20 idd 24 . . . . . . 7 (𝑧𝐵 → (𝑧 𝑋𝑧 𝑋))
2120rgen 2951 . . . . . 6 𝑧𝐵 (𝑧 𝑋𝑧 𝑋)
22 breq2 4689 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝑧 𝑤𝑧 𝑋))
2322imbi2d 329 . . . . . . . . . 10 (𝑤 = 𝑋 → ((𝑧 𝑋𝑧 𝑤) ↔ (𝑧 𝑋𝑧 𝑋)))
2423ralbidv 3015 . . . . . . . . 9 (𝑤 = 𝑋 → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) ↔ ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑋)))
25 breq2 4689 . . . . . . . . 9 (𝑤 = 𝑋 → (𝑥 𝑤𝑥 𝑋))
2624, 25imbi12d 333 . . . . . . . 8 (𝑤 = 𝑋 → ((∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤) ↔ (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑋) → 𝑥 𝑋)))
2726rspcv 3336 . . . . . . 7 (𝑋𝐵 → (∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤) → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑋) → 𝑥 𝑋)))
287, 27syl 17 . . . . . 6 (𝜑 → (∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤) → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑋) → 𝑥 𝑋)))
2921, 28mpii 46 . . . . 5 (𝜑 → (∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤) → 𝑥 𝑋))
3029adantr 480 . . . 4 ((𝜑𝑥𝐵) → (∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤) → 𝑥 𝑋))
318adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐾 ∈ Poset)
32 simpr 476 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
337adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑋𝐵)
349, 10posasymb 16999 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵𝑋𝐵) → ((𝑥 𝑋𝑋 𝑥) ↔ 𝑥 = 𝑋))
3531, 32, 33, 34syl3anc 1366 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑥 𝑋𝑋 𝑥) ↔ 𝑥 = 𝑋))
3635biimpd 219 . . . . 5 ((𝜑𝑥𝐵) → ((𝑥 𝑋𝑋 𝑥) → 𝑥 = 𝑋))
3736ancomsd 469 . . . 4 ((𝜑𝑥𝐵) → ((𝑋 𝑥𝑥 𝑋) → 𝑥 = 𝑋))
3819, 30, 37syl2and 499 . . 3 ((𝜑𝑥𝐵) → ((∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥) ∧ ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤)) → 𝑥 = 𝑋))
39 breq2 4689 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧 𝑥𝑧 𝑋))
4039biimprd 238 . . . . . . 7 (𝑥 = 𝑋 → (𝑧 𝑋𝑧 𝑥))
4140ralrimivw 2996 . . . . . 6 (𝑥 = 𝑋 → ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥))
4241adantl 481 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑥 = 𝑋) → ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥))
437adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → 𝑋𝐵)
44 breq1 4688 . . . . . . . . . . 11 (𝑧 = 𝑋 → (𝑧 𝑤𝑋 𝑤))
4513, 44imbi12d 333 . . . . . . . . . 10 (𝑧 = 𝑋 → ((𝑧 𝑋𝑧 𝑤) ↔ (𝑋 𝑋𝑋 𝑤)))
4645rspcva 3338 . . . . . . . . 9 ((𝑋𝐵 ∧ ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤)) → (𝑋 𝑋𝑋 𝑤))
47 pm5.5 350 . . . . . . . . . . 11 (𝑋 𝑋 → ((𝑋 𝑋𝑋 𝑤) ↔ 𝑋 𝑤))
4812, 47syl 17 . . . . . . . . . 10 (𝜑 → ((𝑋 𝑋𝑋 𝑤) ↔ 𝑋 𝑤))
49 breq1 4688 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑤𝑋 𝑤))
5049bicomd 213 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑋 𝑤𝑥 𝑤))
5148, 50sylan9bb 736 . . . . . . . . 9 ((𝜑𝑥 = 𝑋) → ((𝑋 𝑋𝑋 𝑤) ↔ 𝑥 𝑤))
5246, 51syl5ib 234 . . . . . . . 8 ((𝜑𝑥 = 𝑋) → ((𝑋𝐵 ∧ ∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤)) → 𝑥 𝑤))
5343, 52mpand 711 . . . . . . 7 ((𝜑𝑥 = 𝑋) → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤))
5453ralrimivw 2996 . . . . . 6 ((𝜑𝑥 = 𝑋) → ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤))
5554adantlr 751 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑥 = 𝑋) → ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤))
5642, 55jca 553 . . . 4 (((𝜑𝑥𝐵) ∧ 𝑥 = 𝑋) → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥) ∧ ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤)))
5756ex 449 . . 3 ((𝜑𝑥𝐵) → (𝑥 = 𝑋 → (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥) ∧ ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤))))
5838, 57impbid 202 . 2 ((𝜑𝑥𝐵) → ((∀𝑧𝐵 (𝑧 𝑋𝑧 𝑥) ∧ ∀𝑤𝐵 (∀𝑧𝐵 (𝑧 𝑋𝑧 𝑤) → 𝑥 𝑤)) ↔ 𝑥 = 𝑋))
596, 58syl5bb 272 1 ((𝜑𝑥𝐵) → ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945   class class class wbr 4685  cfv 5926  Basecbs 15904  lecple 15995  Posetcpo 16987  lubclub 16989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-nul 4822
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-preset 16975  df-poset 16993
This theorem is referenced by:  lublecl  17036  lubid  17037
  Copyright terms: Public domain W3C validator