![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubel | Structured version Visualization version GIF version |
Description: An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
lublem.b | ⊢ 𝐵 = (Base‘𝐾) |
lublem.l | ⊢ ≤ = (le‘𝐾) |
lublem.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubel | ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ≤ (𝑈‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatl 17163 | . . . 4 ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Lat) | |
2 | ssel 3630 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵)) | |
3 | 2 | impcom 445 | . . . 4 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ∈ 𝐵) |
4 | lublem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | lublem.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
6 | 4, 5 | lubsn 17141 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = 𝑋) |
7 | 1, 3, 6 | syl2an 493 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ (𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵)) → (𝑈‘{𝑋}) = 𝑋) |
8 | 7 | 3impb 1279 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → (𝑈‘{𝑋}) = 𝑋) |
9 | snssi 4371 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → {𝑋} ⊆ 𝑆) | |
10 | lublem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
11 | 4, 10, 5 | lubss 17168 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ {𝑋} ⊆ 𝑆) → (𝑈‘{𝑋}) ≤ (𝑈‘𝑆)) |
12 | 9, 11 | syl3an3 1401 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑈‘{𝑋}) ≤ (𝑈‘𝑆)) |
13 | 12 | 3com23 1291 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → (𝑈‘{𝑋}) ≤ (𝑈‘𝑆)) |
14 | 8, 13 | eqbrtrrd 4709 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑋 ≤ (𝑈‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 {csn 4210 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 lecple 15995 lubclub 16989 Latclat 17092 CLatccla 17154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-preset 16975 df-poset 16993 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-lat 17093 df-clat 17155 |
This theorem is referenced by: lubun 17170 atlatmstc 34924 2polssN 35519 |
Copyright terms: Public domain | W3C validator |