![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lttri | Structured version Visualization version GIF version |
Description: 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
lttri | ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | lttr 10227 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | 1, 2, 3, 4 | mp3an 1537 | 1 ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2103 class class class wbr 4760 ℝcr 10048 < clt 10187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-resscn 10106 ax-pre-lttrn 10124 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-ltxr 10192 |
This theorem is referenced by: 1lt3 11309 2lt4 11311 1lt4 11312 3lt5 11314 2lt5 11315 1lt5 11316 4lt6 11318 3lt6 11319 2lt6 11320 1lt6 11321 5lt7 11323 4lt7 11324 3lt7 11325 2lt7 11326 1lt7 11327 6lt8 11329 5lt8 11330 4lt8 11331 3lt8 11332 2lt8 11333 1lt8 11334 7lt9 11336 6lt9 11337 5lt9 11338 4lt9 11339 3lt9 11340 2lt9 11341 1lt9 11342 8lt10OLD 11344 7lt10OLD 11345 6lt10OLD 11346 5lt10OLD 11347 4lt10OLD 11348 3lt10OLD 11349 2lt10OLD 11350 1lt10OLD 11351 8lt10 11787 7lt10 11788 6lt10 11789 5lt10 11790 4lt10 11791 3lt10 11792 2lt10 11793 1lt10 11794 sincos2sgn 15044 epos 15055 ene1 15058 dvdslelem 15154 oppcbas 16500 sralem 19300 zlmlem 19988 psgnodpmr 20059 tnglem 22566 xrhmph 22868 vitalilem4 23500 pipos 24332 logneg 24454 asin1 24741 reasinsin 24743 atan1 24775 log2le1 24797 bposlem8 25136 bposlem9 25137 chebbnd1lem2 25279 chebbnd1lem3 25280 chebbnd1 25281 mulog2sumlem2 25344 pntibndlem1 25398 pntlemb 25406 pntlemk 25415 ttglem 25876 cchhllem 25887 axlowdimlem16 25957 dp2ltc 29824 sgnnbi 30837 sgnpbi 30838 signswch 30868 hgt750lem 30959 hgt750lem2 30960 logi 31848 cnndvlem1 32755 bj-minftyccb 33344 bj-pinftynminfty 33346 asindmre 33727 fdc 33773 fourierdlem94 40837 fourierdlem102 40845 fourierdlem103 40846 fourierdlem104 40847 fourierdlem112 40855 fourierdlem113 40856 fourierdlem114 40857 fouriersw 40868 etransclem23 40894 |
Copyright terms: Public domain | W3C validator |