MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubrpd Structured version   Visualization version   GIF version

Theorem ltsubrpd 12097
Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ltsubrpd (𝜑 → (𝐴𝐵) < 𝐴)

Proof of Theorem ltsubrpd
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rpgecld.2 . 2 (𝜑𝐵 ∈ ℝ+)
3 ltsubrp 12059 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) < 𝐴)
41, 2, 3syl2anc 696 1 (𝜑 → (𝐴𝐵) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139   class class class wbr 4804  (class class class)co 6813  cr 10127   < clt 10266  cmin 10458  +crp 12025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-ltxr 10271  df-sub 10460  df-neg 10461  df-rp 12026
This theorem is referenced by:  tanhlt1  15089  pythagtriplem13  15734  iccntr  22825  icccmplem2  22827  opnreen  22835  evth  22959  ovollb2lem  23456  ismbf3d  23620  itg2seq  23708  itg2cn  23729  dvferm2lem  23948  lhop  23978  dvcnvrelem1  23979  dvcnvrelem2  23980  aaliou3lem7  24303  lgseisenlem1  25299  pntlem3  25497  lt2addrd  29825  ltesubnnd  29877  tpr2rico  30267  fiblem  30769  signstfveq0  30963  mblfinlem3  33761  mblfinlem4  33762  suprltrp  40042  suplesup  40053  xrralrecnnge  40111  iooiinicc  40272  sumnnodd  40365  lptre2pt  40375  ioodvbdlimc2lem  40652  dvnmul  40661  stoweidlem18  40738  fourierdlem107  40933  fouriersw  40951  hoiqssbllem3  41344  ovolval5lem2  41373  preimageiingt  41436  smfmullem3  41506
  Copyright terms: Public domain W3C validator