MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubaddd Structured version   Visualization version   GIF version

Theorem ltsubaddd 10836
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ltsubaddd (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))

Proof of Theorem ltsubaddd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 ltsubadd 10711 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1477 1 (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2140   class class class wbr 4805  (class class class)co 6815  cr 10148   + caddc 10152   < clt 10287  cmin 10479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-ltxr 10292  df-sub 10481  df-neg 10482
This theorem is referenced by:  sublt0d  10866  ltaddsublt  10867  supaddc  11203  suprzcl  11670  2submod  12946  hashdvds  15703  prmreclem6  15848  4sqlem6  15870  ovolshftlem1  23498  opnmbllem  23590  mbfaddlem  23647  itg2monolem1  23737  dvlt0  23988  lhop1  23997  plydivlem3  24270  efif1olem1  24509  ang180lem2  24761  atanlogsublem  24863  bposlem1  25230  crctcshwlkn0lem5  26939  eucrctshift  27417  bcm1n  29885  subfacval3  31500  opnmbllem0  33777  itg2addnclem  33793  itg2gt0cn  33797  iooiinicc  40291  0ellimcdiv  40403  wallispilem3  40806  fourierdlem41  40887  fourierdlem49  40894  fourierdlem97  40942  elaa2lem  40972  sge0ltfirp  41139  sfprmdvdsmersenne  42049  proththdlem  42059  ltsubaddb  42833  ltsubsubb  42834  ltsubadd2b  42835
  Copyright terms: Public domain W3C validator