MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsrpr Structured version   Visualization version   GIF version

Theorem ltsrpr 9858
Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
Assertion
Ref Expression
ltsrpr ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))

Proof of Theorem ltsrpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 9848 . 2 ~R ∈ V
2 enrer 9846 . . 3 ~R Er (P × P)
3 erdm 7712 . . 3 ( ~R Er (P × P) → dom ~R = (P × P))
42, 3ax-mp 5 . 2 dom ~R = (P × P)
5 df-nr 9838 . 2 R = ((P × P) / ~R )
6 ltrelsr 9849 . 2 <R ⊆ (R × R)
7 ltrelpr 9780 . 2 <P ⊆ (P × P)
8 0npr 9774 . 2 ¬ ∅ ∈ P
9 dmplp 9794 . 2 dom +P = (P × P)
10 df-ltr 9841 . . 3 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
11 addclpr 9800 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
1211ad2ant2lr 783 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
13 addclpr 9800 . . . . . . 7 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
1413ad2ant2lr 783 . . . . . 6 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵 +P 𝐶) ∈ P)
1512, 14anim12ci 590 . . . . 5 ((((𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ ((𝐴P𝐵P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
1615an4s 868 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
17 enreceq 9847 . . . . . 6 (((𝑧P𝑤P) ∧ (𝐴P𝐵P)) → ([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ↔ (𝑧 +P 𝐵) = (𝑤 +P 𝐴)))
18 enreceq 9847 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑣 +P 𝐷) = (𝑢 +P 𝐶)))
19 eqcom 2628 . . . . . . 7 ((𝑣 +P 𝐷) = (𝑢 +P 𝐶) ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))
2018, 19syl6bb 276 . . . . . 6 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)))
2117, 20bi2anan9 916 . . . . 5 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))))
22 oveq12 6624 . . . . . 6 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
23 addcompr 9803 . . . . . . . . . 10 (𝑢 +P 𝐵) = (𝐵 +P 𝑢)
2423oveq1i 6625 . . . . . . . . 9 ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶)
25 addasspr 9804 . . . . . . . . 9 ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶))
26 addasspr 9804 . . . . . . . . 9 ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶))
2724, 25, 263eqtr3i 2651 . . . . . . . 8 (𝑢 +P (𝐵 +P 𝐶)) = (𝐵 +P (𝑢 +P 𝐶))
2827oveq2i 6626 . . . . . . 7 (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶)))
29 addasspr 9804 . . . . . . 7 ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶)))
30 addasspr 9804 . . . . . . 7 ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶)))
3128, 29, 303eqtr4i 2653 . . . . . 6 ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶))
32 addcompr 9803 . . . . . . . . . 10 (𝑣 +P 𝐴) = (𝐴 +P 𝑣)
3332oveq1i 6625 . . . . . . . . 9 ((𝑣 +P 𝐴) +P 𝐷) = ((𝐴 +P 𝑣) +P 𝐷)
34 addasspr 9804 . . . . . . . . 9 ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷))
35 addasspr 9804 . . . . . . . . 9 ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷))
3633, 34, 353eqtr3i 2651 . . . . . . . 8 (𝑣 +P (𝐴 +P 𝐷)) = (𝐴 +P (𝑣 +P 𝐷))
3736oveq2i 6626 . . . . . . 7 (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷)))
38 addasspr 9804 . . . . . . 7 ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷)))
39 addasspr 9804 . . . . . . 7 ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷)))
4037, 38, 393eqtr4i 2653 . . . . . 6 ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷))
4122, 31, 403eqtr4g 2680 . . . . 5 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)))
4221, 41syl6bi 243 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
43 ovex 6643 . . . . 5 (𝑧 +P 𝑢) ∈ V
44 ovex 6643 . . . . 5 (𝐵 +P 𝐶) ∈ V
45 ltapr 9827 . . . . 5 (𝑓P → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
46 ovex 6643 . . . . 5 (𝑤 +P 𝑣) ∈ V
47 addcompr 9803 . . . . 5 (𝑥 +P 𝑦) = (𝑦 +P 𝑥)
48 ovex 6643 . . . . 5 (𝐴 +P 𝐷) ∈ V
4943, 44, 45, 46, 47, 48caovord3 6812 . . . 4 ((((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P) ∧ ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
5016, 42, 49syl6an 567 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
511, 2, 5, 10, 50brecop 7800 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
521, 4, 5, 6, 7, 8, 9, 51brecop2 7801 1 ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987  cop 4161   class class class wbr 4623   × cxp 5082  dom cdm 5084  (class class class)co 6615   Er wer 7699  [cec 7700  Pcnp 9641   +P cpp 9643  <P cltp 9645   ~R cer 9646  Rcnr 9647   <R cltr 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-omul 7525  df-er 7702  df-ec 7704  df-qs 7708  df-ni 9654  df-pli 9655  df-mi 9656  df-lti 9657  df-plpq 9690  df-mpq 9691  df-ltpq 9692  df-enq 9693  df-nq 9694  df-erq 9695  df-plq 9696  df-mq 9697  df-1nq 9698  df-rq 9699  df-ltnq 9700  df-np 9763  df-plp 9765  df-ltp 9767  df-enr 9837  df-nr 9838  df-ltr 9841
This theorem is referenced by:  gt0srpr  9859  ltsosr  9875  0lt1sr  9876  ltasr  9881  mappsrpr  9889  ltpsrpr  9890  map2psrpr  9891
  Copyright terms: Public domain W3C validator