![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
Ref | Expression |
---|---|
ltso | ⊢ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttri 10297 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | lttr 10302 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5215 | 1 ⊢ < Or ℝ |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5182 ℝcr 10123 < clt 10262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-resscn 10181 ax-pre-lttri 10198 ax-pre-lttrn 10199 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-po 5183 df-so 5184 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-ltxr 10267 |
This theorem is referenced by: gtso 10307 lttri2 10308 lttri3 10309 lttri4 10310 ltnr 10320 ltnsym2 10324 fimaxre 11156 lbinf 11164 suprcl 11171 suprub 11172 suprlub 11175 infrecl 11193 infregelb 11195 infrelb 11196 supfirege 11197 suprfinzcl 11680 uzinfi 11957 suprzcl2 11967 suprzub 11968 2resupmax 12208 infmrp1 12363 fseqsupcl 12966 ssnn0fi 12974 fsuppmapnn0fiublem 12979 isercolllem1 14590 isercolllem2 14591 summolem2 14642 zsum 14644 fsumcvg3 14655 mertenslem2 14812 prodmolem2 14860 zprod 14862 cnso 15171 gcdval 15416 dfgcd2 15461 lcmval 15503 lcmgcdlem 15517 odzval 15694 pczpre 15750 prmreclem1 15818 ramz 15927 odval 18149 odf 18152 gexval 18189 gsumval3 18504 retos 20162 mbfsup 23626 mbfinf 23627 itg2monolem1 23712 itg2mono 23715 dvgt0lem2 23961 dvgt0 23962 plyeq0lem 24161 dgrval 24179 dgrcl 24184 dgrub 24185 dgrlb 24187 elqaalem1 24269 elqaalem3 24271 aalioulem2 24283 logccv 24604 ex-po 27599 ssnnssfz 29854 lmdvg 30304 oddpwdc 30721 ballotlemi 30867 ballotlemiex 30868 ballotlemsup 30871 ballotlemimin 30872 ballotlemfrcn0 30896 ballotlemirc 30898 erdszelem3 31478 erdszelem4 31479 erdszelem5 31480 erdszelem6 31481 erdszelem8 31483 erdszelem9 31484 erdszelem11 31486 erdsze2lem1 31488 erdsze2lem2 31489 supfz 31916 inffz 31917 inffzOLD 31918 gtinf 32615 ptrecube 33718 poimirlem31 33749 poimirlem32 33750 heicant 33753 mblfinlem3 33757 mblfinlem4 33758 ismblfin 33759 incsequz2 33854 totbndbnd 33897 prdsbnd 33901 pellfundval 37942 dgraaval 38212 dgraaf 38215 fzisoeu 40009 uzublem 40151 infrglb 40321 limsupubuzlem 40443 fourierdlem25 40848 fourierdlem31 40854 fourierdlem36 40859 fourierdlem37 40860 fourierdlem42 40865 fourierdlem79 40901 ioorrnopnlem 41023 hoicvr 41264 hoidmvlelem2 41312 iunhoiioolem 41391 vonioolem1 41396 prmdvdsfmtnof1lem1 42002 prmdvdsfmtnof 42004 prmdvdsfmtnof1 42005 ssnn0ssfz 42633 |
Copyright terms: Public domain | W3C validator |