Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnnid Structured version   Visualization version   GIF version

Theorem ltrnnid 35740
 Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnnid
StepHypRef Expression
1 ralinexa 3026 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
2 nne 2827 . . . . . . . 8 (¬ (𝐹𝑝) ≠ 𝑝 ↔ (𝐹𝑝) = 𝑝)
32biimpi 206 . . . . . . 7 (¬ (𝐹𝑝) ≠ 𝑝 → (𝐹𝑝) = 𝑝)
43imim2i 16 . . . . . 6 ((¬ 𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝))
54ralimi 2981 . . . . 5 (∀𝑝𝐴𝑝 𝑊 → ¬ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
61, 5sylbir 225 . . . 4 (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝))
7 ltrneq.b . . . . 5 𝐵 = (Base‘𝐾)
8 ltrneq.l . . . . 5 = (le‘𝐾)
9 ltrneq.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 ltrneq.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 ltrneq.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
127, 8, 9, 10, 11ltrnid 35739 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
136, 12syl5ib 234 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵)))
1413necon1ad 2840 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝)))
15143impia 1280 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝐹𝑝) ≠ 𝑝))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942   class class class wbr 4685   I cid 5052   ↾ cres 5145  ‘cfv 5926  Basecbs 15904  lecple 15995  Atomscatm 34868  HLchlt 34955  LHypclh 35588  LTrncltrn 35705 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-laut 35593  df-ldil 35708  df-ltrn 35709 This theorem is referenced by:  trlnidat  35778
 Copyright terms: Public domain W3C validator