Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnmwOLD Structured version   Visualization version   GIF version

Theorem ltrnmwOLD 35910
Description: Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.) Obsolete version of ltrnmw 35909 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ltrnmwOLD.l = (le‘𝐾)
ltrnmwOLD.m = (meet‘𝐾)
ltrnmwOLD.z 0 = (0.‘𝐾)
ltrnmwOLD.a 𝐴 = (Atoms‘𝐾)
ltrnmwOLD.h 𝐻 = (LHyp‘𝐾)
ltrnmwOLD.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnmwOLD (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) 𝑊) = 0 )

Proof of Theorem ltrnmwOLD
StepHypRef Expression
1 simp1 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2 1129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
3 simp3l 1220 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
4 eqid 2748 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 ltrnmwOLD.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 35048 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
8 simp1r 1217 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
9 ltrnmwOLD.h . . . . . 6 𝐻 = (LHyp‘𝐾)
104, 9lhpbase 35756 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
118, 10syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
12 ltrnmwOLD.m . . . . 5 = (meet‘𝐾)
13 ltrnmwOLD.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
144, 12, 9, 13ltrnm 35889 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (𝐹‘(𝑃 𝑊)) = ((𝐹𝑃) (𝐹𝑊)))
151, 2, 7, 11, 14syl112anc 1467 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝑃 𝑊)) = ((𝐹𝑃) (𝐹𝑊)))
16 simp3r 1221 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
17 simp1l 1216 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
18 hlatl 35119 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1917, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ AtLat)
20 ltrnmwOLD.l . . . . . . 7 = (le‘𝐾)
21 ltrnmwOLD.z . . . . . . 7 0 = (0.‘𝐾)
224, 20, 12, 21, 5atnle 35076 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑊 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
2319, 3, 11, 22syl3anc 1463 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
2416, 23mpbid 222 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
2524fveq2d 6344 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝑃 𝑊)) = (𝐹0 ))
2615, 25eqtr3d 2784 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝐹𝑊)) = (𝐹0 ))
27 hllat 35122 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2817, 27syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
294, 20latref 17225 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 𝑊)
3028, 11, 29syl2anc 696 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 𝑊)
314, 20, 9, 13ltrnval1 35892 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 𝑊)) → (𝐹𝑊) = 𝑊)
321, 2, 11, 30, 31syl112anc 1467 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑊) = 𝑊)
3332oveq2d 6817 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝐹𝑊)) = ((𝐹𝑃) 𝑊))
34 hlop 35121 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
3517, 34syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OP)
364, 21op0cl 34943 . . . 4 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
3735, 36syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 0 ∈ (Base‘𝐾))
384, 20, 21op0le 34945 . . . 4 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 𝑊)
3935, 11, 38syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 0 𝑊)
404, 20, 9, 13ltrnval1 35892 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ( 0 ∈ (Base‘𝐾) ∧ 0 𝑊)) → (𝐹0 ) = 0 )
411, 2, 37, 39, 40syl112anc 1467 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹0 ) = 0 )
4226, 33, 413eqtr3d 2790 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) 𝑊) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127   class class class wbr 4792  cfv 6037  (class class class)co 6801  Basecbs 16030  lecple 16121  meetcmee 17117  0.cp0 17209  Latclat 17217  OPcops 34931  Atomscatm 35022  AtLatcal 35023  HLchlt 35109  LHypclh 35742  LTrncltrn 35859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-map 8013  df-preset 17100  df-poset 17118  df-plt 17130  df-lub 17146  df-glb 17147  df-join 17148  df-meet 17149  df-p0 17211  df-lat 17218  df-oposet 34935  df-ol 34937  df-oml 34938  df-covers 35025  df-ats 35026  df-atl 35057  df-cvlat 35081  df-hlat 35110  df-lhyp 35746  df-laut 35747  df-ldil 35862  df-ltrn 35863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator