![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnle | Structured version Visualization version GIF version |
Description: Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnle.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrnle.l | ⊢ ≤ = (le‘𝐾) |
ltrnle.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnle.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1239 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ 𝑉) | |
2 | ltrnle.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2771 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
4 | ltrnle.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | ltrnlaut 35931 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
6 | 5 | 3adant3 1126 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹 ∈ (LAut‘𝐾)) |
7 | simp3l 1243 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
8 | simp3r 1244 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
9 | ltrnle.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
10 | ltrnle.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
11 | 9, 10, 3 | lautle 35892 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
12 | 1, 6, 7, 8, 11 | syl22anc 1477 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 Basecbs 16064 lecple 16156 LHypclh 35792 LAutclaut 35793 LTrncltrn 35909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-map 8011 df-laut 35797 df-ldil 35912 df-ltrn 35913 |
This theorem is referenced by: ltrnel 35947 ltrncnvel 35950 cdlemc2 36001 cdlemg17h 36477 |
Copyright terms: Public domain | W3C validator |