![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrniotaval | Structured version Visualization version GIF version |
Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.) |
Ref | Expression |
---|---|
ltrniotaval.l | ⊢ ≤ = (le‘𝐾) |
ltrniotaval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrniotaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrniotaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
ltrniotaval.f | ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
ltrniotaval | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrniotaval.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | ltrniotaval.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | ltrniotaval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | ltrniotaval.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdleme 36165 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
6 | ltrniotaval.f | . . . . . . 7 ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
7 | nfriota1 6658 | . . . . . . 7 ⊢ Ⅎ𝑓(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
8 | 6, 7 | nfcxfr 2791 | . . . . . 6 ⊢ Ⅎ𝑓𝐹 |
9 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑓𝑃 | |
10 | 8, 9 | nffv 6236 | . . . . 5 ⊢ Ⅎ𝑓(𝐹‘𝑃) |
11 | 10 | nfeq1 2807 | . . . 4 ⊢ Ⅎ𝑓(𝐹‘𝑃) = 𝑄 |
12 | fveq1 6228 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑃) = (𝐹‘𝑃)) | |
13 | 12 | eqeq1d 2653 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑃) = 𝑄 ↔ (𝐹‘𝑃) = 𝑄)) |
14 | 11, 6, 13 | riotaprop 6675 | . . 3 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑄)) |
15 | 14 | simprd 478 | . 2 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 → (𝐹‘𝑃) = 𝑄) |
16 | 5, 15 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∃!wreu 2943 class class class wbr 4685 ‘cfv 5926 ℩crio 6650 lecple 15995 Atomscatm 34868 HLchlt 34955 LHypclh 35588 LTrncltrn 35705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-undef 7444 df-map 7901 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 |
This theorem is referenced by: ltrniotacnvval 36187 ltrniotaidvalN 36188 ltrniotavalbN 36189 cdlemm10N 36724 cdlemn2 36801 cdlemn3 36803 cdlemn9 36811 dihmeetlem13N 36925 dih1dimatlem0 36934 dihjatcclem3 37026 |
Copyright terms: Public domain | W3C validator |