Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnid Structured version   Visualization version   GIF version

Theorem ltrnid 35943
Description: A lattice translation is the identity function iff all atoms not under the fiducial co-atom 𝑊 are equal to their values. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp-4l 768 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐾 ∈ HL)
2 ltrneq.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 eqid 2771 . . . . . . . . 9 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrneq.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 35931 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
65ad2antrr 705 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simpr 471 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝑥𝐵)
8 simplll 758 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simpllr 760 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝐹𝑇)
10 ltrneq.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
11 ltrneq.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
1210, 11atbase 35098 . . . . . . . . . . . . . 14 (𝑝𝐴𝑝𝐵)
1312ad2antlr 706 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝𝐵)
14 simpr 471 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝 𝑊)
15 ltrneq.l . . . . . . . . . . . . . 14 = (le‘𝐾)
1610, 15, 2, 4ltrnval1 35942 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐵𝑝 𝑊)) → (𝐹𝑝) = 𝑝)
178, 9, 13, 14, 16syl112anc 1480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐹𝑝) = 𝑝)
1817ex 397 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝑝 𝑊 → (𝐹𝑝) = 𝑝))
19 pm2.61 183 . . . . . . . . . . 11 ((𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2018, 19syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2120ralimdva 3111 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝))
2221imp 393 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2322adantr 466 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2410, 11, 3lauteq 35903 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾) ∧ 𝑥𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑥) = 𝑥)
251, 6, 7, 23, 24syl31anc 1479 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = 𝑥)
26 fvresi 6583 . . . . . . 7 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2726adantl 467 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2825, 27eqtr4d 2808 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
2928ralrimiva 3115 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
3010, 2, 4ltrn1o 35932 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
3130adantr 466 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹:𝐵1-1-onto𝐵)
32 f1ofn 6279 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹 Fn 𝐵)
3331, 32syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 Fn 𝐵)
34 fnresi 6148 . . . . 5 ( I ↾ 𝐵) Fn 𝐵
35 eqfnfv 6454 . . . . 5 ((𝐹 Fn 𝐵 ∧ ( I ↾ 𝐵) Fn 𝐵) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3633, 34, 35sylancl 574 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3729, 36mpbird 247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 = ( I ↾ 𝐵))
3837ex 397 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → 𝐹 = ( I ↾ 𝐵)))
3912adantl 467 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → 𝑝𝐵)
40 fvresi 6583 . . . . . 6 (𝑝𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝)
4139, 40syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
42 fveq1 6331 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = (( I ↾ 𝐵)‘𝑝))
4342eqeq1d 2773 . . . . 5 (𝐹 = ( I ↾ 𝐵) → ((𝐹𝑝) = 𝑝 ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
4441, 43syl5ibrcom 237 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = 𝑝))
4544a1dd 50 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4645ralrimdva 3118 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4738, 46impbid 202 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061   class class class wbr 4786   I cid 5156  cres 5251   Fn wfn 6026  1-1-ontowf1o 6030  cfv 6031  Basecbs 16064  lecple 16156  Atomscatm 35072  HLchlt 35159  LHypclh 35792  LAutclaut 35793  LTrncltrn 35909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-laut 35797  df-ldil 35912  df-ltrn 35913
This theorem is referenced by:  ltrnnid  35944
  Copyright terms: Public domain W3C validator