Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq2 Structured version   Visualization version   GIF version

Theorem ltrneq2 35937
Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
ltrneq2.a 𝐴 = (Atoms‘𝐾)
ltrneq2.h 𝐻 = (LHyp‘𝐾)
ltrneq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrneq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝑇(𝑝)   𝐻(𝑝)   𝐾(𝑝)   𝑊(𝑝)

Proof of Theorem ltrneq2
Dummy variables 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1228 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1232 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺𝑇)
3 eqid 2760 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
4 ltrneq2.h . . . . . . . . . . . . . . 15 𝐻 = (LHyp‘𝐾)
5 ltrneq2.t . . . . . . . . . . . . . . 15 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 35913 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
71, 2, 6syl2anc 696 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
8 simpl2 1230 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹𝑇)
9 simpr3 1238 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞𝐴)
10 eqid 2760 . . . . . . . . . . . . . . . 16 (le‘𝐾) = (le‘𝐾)
11 ltrneq2.a . . . . . . . . . . . . . . . 16 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrncnvat 35930 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑞𝐴) → (𝐹𝑞) ∈ 𝐴)
131, 8, 9, 12syl3anc 1477 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ 𝐴)
143, 11atbase 35079 . . . . . . . . . . . . . 14 ((𝐹𝑞) ∈ 𝐴 → (𝐹𝑞) ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ (Base‘𝐾))
16 f1ocnvfv1 6695 . . . . . . . . . . . . 13 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (𝐹𝑞) ∈ (Base‘𝐾)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
177, 15, 16syl2anc 696 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
18 simpr2 1236 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
19 fveq2 6352 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐹𝑝) = (𝐹‘(𝐹𝑞)))
20 fveq2 6352 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐺𝑝) = (𝐺‘(𝐹𝑞)))
2119, 20eqeq12d 2775 . . . . . . . . . . . . . . . 16 (𝑝 = (𝐹𝑞) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2221rspcv 3445 . . . . . . . . . . . . . . 15 ((𝐹𝑞) ∈ 𝐴 → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2313, 18, 22sylc 65 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞)))
243, 4, 5ltrn1o 35913 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
251, 8, 24syl2anc 696 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
263, 11atbase 35079 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
279, 26syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞 ∈ (Base‘𝐾))
28 f1ocnvfv2 6696 . . . . . . . . . . . . . . 15 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑞)) = 𝑞)
2925, 27, 28syl2anc 696 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = 𝑞)
3023, 29eqtr3d 2796 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐹𝑞)) = 𝑞)
3130fveq2d 6356 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐺𝑞))
3217, 31eqtr3d 2796 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) = (𝐺𝑞))
3332breq1d 4814 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)𝑥 ↔ (𝐺𝑞)(le‘𝐾)𝑥))
34 simpr1 1234 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑥 ∈ (Base‘𝐾))
35 f1ocnvfv1 6695 . . . . . . . . . . . 12 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3625, 34, 35syl2anc 696 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3736breq2d 4816 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐹𝑞)(le‘𝐾)𝑥))
38 f1ocnvfv1 6695 . . . . . . . . . . . 12 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺‘(𝐺𝑥)) = 𝑥)
397, 34, 38syl2anc 696 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺𝑥)) = 𝑥)
4039breq2d 4816 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥)) ↔ (𝐺𝑞)(le‘𝐾)𝑥))
4133, 37, 403bitr4d 300 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
42 simpl1l 1279 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐾 ∈ HL)
43 eqid 2760 . . . . . . . . . . . 12 (LAut‘𝐾) = (LAut‘𝐾)
444, 43, 5ltrnlaut 35912 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
451, 8, 44syl2anc 696 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹 ∈ (LAut‘𝐾))
463, 4, 5ltrncl 35914 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
471, 8, 34, 46syl3anc 1477 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑥) ∈ (Base‘𝐾))
483, 10, 43lautcnvle 35878 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐹𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
4942, 45, 27, 47, 48syl22anc 1478 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
504, 43, 5ltrnlaut 35912 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺 ∈ (LAut‘𝐾))
511, 2, 50syl2anc 696 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺 ∈ (LAut‘𝐾))
523, 4, 5ltrncl 35914 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
531, 2, 34, 52syl3anc 1477 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺𝑥) ∈ (Base‘𝐾))
543, 10, 43lautcnvle 35878 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐺 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5542, 51, 27, 53, 54syl22anc 1478 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5641, 49, 553bitr4d 300 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))
57563exp2 1448 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑥 ∈ (Base‘𝐾) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))))
5857imp 444 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))))
5958ralrimdv 3106 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))
60 simpl1l 1279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
61 simpl1 1228 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
62 simpl2 1230 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐹𝑇)
63 simpr 479 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
6461, 62, 63, 46syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
65 simpl3 1232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐺𝑇)
6661, 65, 63, 52syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
673, 10, 11hlateq 35188 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑥) ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6860, 64, 66, 67syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6959, 68sylibd 229 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹𝑥) = (𝐺𝑥)))
7069ralrimdva 3107 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
71243adant3 1127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
72 f1ofn 6299 . . . . 5 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹 Fn (Base‘𝐾))
7371, 72syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹 Fn (Base‘𝐾))
7463adant2 1126 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
75 f1ofn 6299 . . . . 5 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺 Fn (Base‘𝐾))
7674, 75syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺 Fn (Base‘𝐾))
77 eqfnfv 6474 . . . 4 ((𝐹 Fn (Base‘𝐾) ∧ 𝐺 Fn (Base‘𝐾)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7873, 76, 77syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7970, 78sylibrd 249 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → 𝐹 = 𝐺))
80 fveq1 6351 . . 3 (𝐹 = 𝐺 → (𝐹𝑝) = (𝐺𝑝))
8180ralrimivw 3105 . 2 (𝐹 = 𝐺 → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
8279, 81impbid1 215 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050   class class class wbr 4804  ccnv 5265   Fn wfn 6044  1-1-ontowf1o 6048  cfv 6049  Basecbs 16059  lecple 16150  Atomscatm 35053  HLchlt 35140  LHypclh 35773  LAutclaut 35774  LTrncltrn 35890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-map 8025  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894
This theorem is referenced by:  ltrneq  35938  cdlemd  35997
  Copyright terms: Public domain W3C validator